BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8713747)

  • 1. Activity of alkaline phosphatase in water-in-oil microemulsions containing vegetable oil.
    Gupta S; Mukhopadhyay L; Moulik SP
    Indian J Biochem Biophys; 1995 Oct; 32(5):261-5. PubMed ID: 8713747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological microemulsions: Part IV--Phase behaviour and dynamics of microemulsions prepared with vegetable oils mixed with aerosol-OT, cinnamic alcohol and water.
    Mitra N; Mukhopadhyay L; Bhattacharya PK; Moulik SP
    Indian J Biochem Biophys; 1994 Apr; 31(2):115-20. PubMed ID: 7523281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological microemulsions V: mutual mixing of oils, amphiphiles and water in ternary and quaternary combinations.
    Mitra N; Mukherjee L; Bhattacharya PK; Moulik SP
    Indian J Biochem Biophys; 1996 Jun; 33(3):206-12. PubMed ID: 8828291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions.
    Roy S; Dasgupta A; Das PK
    Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: I. Effect of pH and water content on reaction kinetics.
    Crooks GE; Rees GD; Robinson BH; Svensson M; Stephenson GR
    Biotechnol Bioeng; 1995 Oct; 48(1):78-88. PubMed ID: 18623462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olive oil microemulsions: enzymatic activities and structural characteristics.
    Papadimitriou V; Sotiroudis TG; Xenakis A
    Langmuir; 2007 Feb; 23(4):2071-7. PubMed ID: 17279697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.
    Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T
    J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol.
    Mitra RK; Paul BK
    J Colloid Interface Sci; 2005 Mar; 283(2):565-77. PubMed ID: 15721934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of prospective plant oil derived micro-emulsion vehicles for drug delivery.
    Gupta S; Sanyal SK; Datta S; Moulik SP
    Indian J Biochem Biophys; 2006 Aug; 43(4):254-7. PubMed ID: 17133772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp. REN-21 in aqueous solutions and water-in-oil microemulsions.
    Rodakiewicz-Nowak J; Ito M
    J Colloid Interface Sci; 2005 Apr; 284(2):674-9. PubMed ID: 15780309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of novel water-in-oil microemulsions in microemulsion electrokinetic chromatography.
    Altria KD; Broderick MF; Donegan S; Power J
    Electrophoresis; 2004 Feb; 25(4-5):645-52. PubMed ID: 14981692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.
    Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT
    Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production.
    Bezergianni S; Kalogianni A; Vasalos IA
    Bioresour Technol; 2009 Jun; 100(12):3036-42. PubMed ID: 19231171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of Formation of Biological Microemulsion (with Cinnamic Alcohol, Aerosol OT, Tween 20, and Water) and Kinetics of Alkaline Fading of Crystal Violet in Them.
    Mukhopadhyay L; Mitra N; Bhattacharya PK; Moulik SP
    J Colloid Interface Sci; 1997 Feb; 186(1):1-8. PubMed ID: 9056287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.