These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8713958)

  • 1. Oxytocin suppresses the GABAergic synaptic input in supraoptic neurones from the rat.
    Brussaard AB
    Adv Exp Med Biol; 1995; 395():105-15. PubMed ID: 8713958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat.
    Brussaard AB; Kits KS; de Vlieger TA
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):495-507. PubMed ID: 8961190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine D4 receptor-mediated presynaptic inhibition of GABAergic transmission in the rat supraoptic nucleus.
    Azdad K; Piet R; Poulain DA; Oliet SH
    J Neurophysiol; 2003 Aug; 90(2):559-65. PubMed ID: 12711714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus.
    Kombian SB; Hirasawa M; Mouginot D; Pittman QJ
    Prog Brain Res; 2002; 139():235-46. PubMed ID: 12436939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in properties and neurosteroid regulation of GABAergic synapses in the supraoptic nucleus during the mammalian female reproductive cycle.
    Brussaard AB; Devay P; Leyting-Vermeulen JL; Kits KS
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):513-24. PubMed ID: 10087349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO inhibits supraoptic oxytocin and vasopressin neurons via activation of GABAergic synaptic inputs.
    Stern JE; Ludwig M
    Am J Physiol Regul Integr Comp Physiol; 2001 Jun; 280(6):R1815-22. PubMed ID: 11353687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices.
    Vavra V; Bhattacharya A; Zemkova H
    Neuroscience; 2011 Aug; 188():1-12. PubMed ID: 21575687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia.
    Park JB; Skalska S; Stern JE
    Endocrinology; 2006 Aug; 147(8):3746-60. PubMed ID: 16675519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurones in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus.
    Cui LN; Saeb-Parsy K; Dyball RE
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):149-59. PubMed ID: 9234203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical evidence for oestrogen receptors within GABA neurones located in the perinuclear zone of the supraoptic nucleus and GABAA receptor beta 2/beta 3 subunits on supraoptic oxytocin neurones.
    Herbison AE
    J Neuroendocrinol; 1994 Feb; 6(1):5-11. PubMed ID: 8025569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity.
    Filosa JA; Naskar K; Perfume G; Iddings JA; Biancardi VC; Vatta MS; Stern JE
    J Neuroendocrinol; 2012 Feb; 24(2):378-92. PubMed ID: 22007724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.
    Ohkubo J; Ohbuchi T; Yoshimura M; Maruyama T; Ishikura T; Matsuura T; Suzuki H; Ueta Y
    J Neuroendocrinol; 2014 Jan; 26(1):43-51. PubMed ID: 24341559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patch-clamp study of membrane properties and GABA-activated currents of rat magnocellular supraoptic neurons in thin slice preparation.
    Bufler J; Jahn K; Weindl A; Arzberger T; Hatt H
    Neurobiology (Bp); 1994; 2(1):5-20. PubMed ID: 7812298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential GABAA receptor clustering determines GABA synapse plasticity in rat oxytocin neurons around parturition and the onset of lactation.
    Koksma JJ; Fritschy JM; Mack V; Van Kesteren RE; Brussaard AB
    Mol Cell Neurosci; 2005 Jan; 28(1):128-40. PubMed ID: 15607948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing actions of endothelin-1 on glutamatergic transmission onto vasopressin and oxytocin neurons in the supraoptic nucleus.
    Zampronio AR; Kuzmiski JB; Florence CM; Mulligan SJ; Pittman QJ
    J Neurosci; 2010 Dec; 30(50):16855-63. PubMed ID: 21159956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuated benzodiazepine-sensitive tonic GABAA currents of supraoptic magnocellular neuroendocrine cells in 24-h water-deprived rats.
    Pandit S; Song JG; Kim YJ; Jeong JA; Jo JY; Lee GS; Kim HW; Jeon BH; Lee JU; Park JB
    J Neuroendocrinol; 2014 Jan; 26(1):26-34. PubMed ID: 24313753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of GABAergic synaptic transmission by terminal nicotinic acetylcholine receptors in the central autonomic nucleus of the neonatal rat spinal cord.
    Seddik R; Schlichter R; Trouslard J
    Neuropharmacology; 2006 Jul; 51(1):77-89. PubMed ID: 16678861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA-induced facilitation of the periodic bursting activity of oxytocin neurones in suckled rats.
    Moos FC
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):103-14. PubMed ID: 8568646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced neurotransmitter release at glutamatergic synapses on oxytocin neurones during lactation in the rat.
    Stern JE; Hestrin S; Armstrong WE
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):109-14. PubMed ID: 10878104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of spontaneous inhibitory postsynaptic currents (IPSC) by noradrenaline in rat supraoptic neurons through presynaptic alpha2-adrenoceptors.
    Wang YF; Shibuya I; Kabashima N; Setiadji VS; Isse T; Ueta Y; Yamashita H
    Brain Res; 1998 Oct; 807(1-2):61-9. PubMed ID: 9756995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.