These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8714199)

  • 1. Time-resolved emission spectroscopy as a tool to follow nucleic acid-protein interaction.
    Bhargava P; Gopal V; Mayalagu S; Chatterji D
    Indian J Biochem Biophys; 1995 Dec; 32(6):322-8. PubMed ID: 8714199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids.
    Klostermeier D; Millar DP
    Biopolymers; 2001-2002; 61(3):159-79. PubMed ID: 11987179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study.
    Joseph M; Nagaraj R
    Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time measurements of protein affinities on membrane surfaces by fluorescence spectroscopy.
    Philip F; Scarlata S
    Sci STKE; 2006 Aug; 2006(350):pl5. PubMed ID: 16940440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PET-FCS: probing rapid structural fluctuations of proteins and nucleic acids by single-molecule fluorescence quenching.
    Sauer M; Neuweiler H
    Methods Mol Biol; 2014; 1076():597-615. PubMed ID: 24108646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo.
    Baudendistel N; Müller G; Waldeck W; Angel P; Langowski J
    Chemphyschem; 2005 May; 6(5):984-90. PubMed ID: 15884086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence approaches to quantifying biomolecular interactions.
    Royer CA; Scarlata SF
    Methods Enzymol; 2008; 450():79-106. PubMed ID: 19152857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blinking fluorophores: what do they tell us about protein dynamics?
    Bagshaw CR; Cherny D
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):979-82. PubMed ID: 17052241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence, phosphorescence, and optically detected magnetic resonance studies of the nucleic acid association of the nucleocapsid protein of the murine leukemia virus.
    Wu JQ; Maki AH; Ozarowski A; Urbaneja MA; Henderson LE; Casas-Finet JR
    Biochemistry; 1997 May; 36(20):6115-23. PubMed ID: 9166782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species.
    Xiao Y; Buschmann V; Weston KD
    Anal Chem; 2005 Jan; 77(1):36-46. PubMed ID: 15623276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved fluorescence resonance energy transfer studies of DNA bending in double-stranded oligonucleotides and in DNA-protein complexes.
    Parkhurst LJ; Parkhurst KM; Powell R; Wu J; Williams S
    Biopolymers; 2001-2002; 61(3):180-200. PubMed ID: 11987180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular tryst peeping: detection of interactions between nonlabeled nucleic acids by fluorescence resonance energy transfer.
    Ota N; Sato T; Taira K; Ohkawa J
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1067-74. PubMed ID: 11741300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosecond time-dependent Stokes shift at the tunnel mouth of haloalkane dehalogenases.
    Jesenská A; Sýkora J; Olzyńska A; Brezovský J; Zdráhal Z; Damborský J; Hof M
    J Am Chem Soc; 2009 Jan; 131(2):494-501. PubMed ID: 19113888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring sol-to-gel transitions via fluorescence lifetime determination using viscosity sensitive fluorescent probes.
    Hungerford G; Allison A; McLoskey D; Kuimova MK; Yahioglu G; Suhling K
    J Phys Chem B; 2009 Sep; 113(35):12067-74. PubMed ID: 19708714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.
    Walter NG
    Methods; 2001 Sep; 25(1):19-30. PubMed ID: 11558994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan.
    Marmé N; Knemeyer JP; Sauer M; Wolfrum J
    Bioconjug Chem; 2003; 14(6):1133-9. PubMed ID: 14624626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation.
    Lata S; Gavutis M; Tampé R; Piehler J
    J Am Chem Soc; 2006 Feb; 128(7):2365-72. PubMed ID: 16478192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence technologies for monitoring interactions between biological molecules in vitro.
    Deshayes S; Divita G
    Prog Mol Biol Transl Sci; 2013; 113():109-43. PubMed ID: 23244790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.