BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8714351)

  • 1. [The role of ionic transporters in the long-term regulation of the water content in animal cells. The mathematical model and real lymphoid cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1995; 37(12):1151-66. PubMed ID: 8714351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computation of the K+, Na+ and Cl- fluxes through plasma membrane of animal cell with Na+/K+ pump, NKCC, NC cotransporters, and ionic channels with and without non-Goldman rectification in K+ channels. Norma and apoptosis].
    Rubashkin AA; Iurinskaia VE; Vereninov AA
    Tsitologiia; 2010; 52(7):568-73. PubMed ID: 20799622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the monovalent ion fluxes in U937 cells under the balanced ion distribution: recognition of ion transporters responsible for changes in cell ion and water balance during apoptosis.
    Vereninov AA; Goryachaya TS; Moshkov AV; Vassilieva IO; Yurinskaya VE; Lang F; Rubashkin AA
    Cell Biol Int; 2007 Apr; 31(4):382-93. PubMed ID: 17337217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Ionic, electrical and water balance in the animal cell. The system with active cation transport, Goldman's channels and the Na + K +2Cl-type symport].
    Vereninov AA; Vereninov AA
    Tsitologiia; 1991; 33(11):4-17. PubMed ID: 1726375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2.
    Wehner F; Lawonn P; Tinel H
    Pflugers Arch; 2002 Mar; 443(5-6):779-90. PubMed ID: 11889576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer.
    Scott GR; Schulte PM; Wood CM
    J Exp Biol; 2006 Oct; 209(Pt 20):4040-50. PubMed ID: 17023598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of ion transport perturbations caused by hu MDR 1 protein overexpression.
    Hoffman MM; Roepe PD
    Biochemistry; 1997 Sep; 36(37):11153-68. PubMed ID: 9287158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Integration of monovalent ion fluxes across plasma membrane under the balanced state: ion gradients and water balance in animal cells].
    Vereninov IA; Iurinskaia VE; Vereninov AA
    Ross Fiziol Zh Im I M Sechenova; 2013 May; 99(5):619-29. PubMed ID: 24459872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes in K+, Na+ and Cl- contents and K+ and Cl- fluxes during apoptosis of U937 cells by staurosporine. On the mechanism of cell dehydration in apoptosis].
    Iurinskaia VE; Goriachaia TS; Rubashkin AA; Shirokova AV; Vereninov AA
    Tsitologiia; 2010; 52(7):562-7. PubMed ID: 20799621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up?
    Panayiotidis MI; Bortner CD; Cidlowski JA
    Acta Physiol (Oxf); 2006; 187(1-2):205-15. PubMed ID: 16734757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion transport in the intestine of Gobius niger in both isotonic and hypotonic conditions.
    Trischitta F; Denaro MG; Faggio C
    J Exp Zool A Comp Exp Biol; 2004 Jan; 301(1):49-62. PubMed ID: 14695688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion channels and transporters involved in cell volume regulation and sensor mechanisms.
    Okada Y
    Cell Biochem Biophys; 2004; 41(2):233-58. PubMed ID: 15475611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism.
    Graf J; Häussinger D
    J Hepatol; 1996; 24 Suppl 1():53-77. PubMed ID: 8926370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of HCO3- on cell composition of rabbit ciliary epithelium: a new model for aqueous humor secretion.
    McLaughlin CW; Peart D; Purves RD; Carré DA; Macknight AD; Civan MM
    Invest Ophthalmol Vis Sci; 1998 Aug; 39(9):1631-41. PubMed ID: 9699552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead hampers gill cell volume regulation in marine crabs: stronger effect in a weak osmoregulator than in an osmoconformer.
    Amado EM; Freire CA; Grassi MT; Souza MM
    Aquat Toxicol; 2012 Jan; 106-107():95-103. PubMed ID: 22115908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pump and leak steady-state concept with a variety of regulated leak pathways.
    Hoffmann EK
    J Membr Biol; 2001 Dec; 184(3):321-30. PubMed ID: 11891558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance.
    Ianowski JP; O'Donnell MJ
    J Exp Biol; 2004 Jul; 207(Pt 15):2599-609. PubMed ID: 15201292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.