These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8714676)
41. Activation of cyclic AMP-dependent protein kinase in okadaic acid-treated neurons potentiates neurofilament fragmentation and stimulates phosphorylation of Ser2 in the low-molecular-mass neurofilament subunit. Giasson BI; Cromlish JA; Athlan ES; Mushynski WE J Neurochem; 1996 Mar; 66(3):1207-13. PubMed ID: 8769885 [TBL] [Abstract][Full Text] [Related]
42. Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. Jacomy H; Zhu Q; Couillard-Després S; Beaulieu JM; Julien JP J Neurochem; 1999 Sep; 73(3):972-84. PubMed ID: 10461886 [TBL] [Abstract][Full Text] [Related]
43. Partial sequence of the rat heavy neurofilament polypeptide (NF-H). Identification of putative phosphorylation sites. Breen KC; Robinson PA; Wion D; Anderton BH FEBS Lett; 1988 Dec; 241(1-2):213-8. PubMed ID: 3143606 [TBL] [Abstract][Full Text] [Related]
44. Neurofilament phosphorylation: a new look at regulation and function. Nixon RA; Sihag RK Trends Neurosci; 1991 Nov; 14(11):501-6. PubMed ID: 1726767 [TBL] [Abstract][Full Text] [Related]
45. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons. Pijak DS; Hall GF; Tenicki PJ; Boulos AS; Lurie DI; Selzer ME J Comp Neurol; 1996 May; 368(4):569-81. PubMed ID: 8744444 [TBL] [Abstract][Full Text] [Related]
46. Neurofilament and intermediate filament immunoreactivity in human intestinal myenteric neurons. Eaker EY Dig Dis Sci; 1997 Sep; 42(9):1926-32. PubMed ID: 9331157 [TBL] [Abstract][Full Text] [Related]
47. Serine-23 is a major protein kinase A phosphorylation site on the amino-terminal head domain of the middle molecular mass subunit of neurofilament proteins. Sihag RK; Jaffe H; Nixon RA; Rong X J Neurochem; 1999 Feb; 72(2):491-9. PubMed ID: 9930720 [TBL] [Abstract][Full Text] [Related]
48. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. Lewis SE; Nixon RA J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556 [TBL] [Abstract][Full Text] [Related]
49. Effect of phosphorylation on 68 KDa neurofilament subunit protein assembly by the cyclic AMP dependent protein kinase in vitro. Nakamura Y; Takeda M; Angelides KJ; Tanaka T; Tada K; Nishimura T Biochem Biophys Res Commun; 1990 Jun; 169(2):744-50. PubMed ID: 2357230 [TBL] [Abstract][Full Text] [Related]
50. The effect of rod domain A148V mutation of neurofilament light chain on filament formation. Lee IB; Kim SK; Chung SH; Kim H; Kwon TK; Min do S; Chang JS BMB Rep; 2008 Dec; 41(12):868-74. PubMed ID: 19123978 [TBL] [Abstract][Full Text] [Related]
51. Neurofilament high molecular weight-green fluorescent protein fusion is normally expressed in neurons and transported in axons: a neuronal marker to investigate the biology of neurofilaments. Letournel F; Bocquet A; Perrot R; Dechaume A; Guinut F; Eyer J; Barthelaix A Neuroscience; 2006; 137(1):103-11. PubMed ID: 16289584 [TBL] [Abstract][Full Text] [Related]
52. Neurofilaments in health and disease. Gotow T Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476 [TBL] [Abstract][Full Text] [Related]
53. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928 [TBL] [Abstract][Full Text] [Related]
55. Phosphorylation and dephosphorylation of neurofilament proteins in retinal ganglion cell neurons in vivo. Nixon RA; Lewis SE Adv Exp Med Biol; 1987; 221():167-86. PubMed ID: 3124528 [No Abstract] [Full Text] [Related]
56. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. Chang R; Kwak Y; Gebremichael Y J Mol Biol; 2009 Aug; 391(3):648-60. PubMed ID: 19559031 [TBL] [Abstract][Full Text] [Related]
57. Extensive phosphorylation and axonal transport of triton-soluble neurofilament subunits. Shea TB; Jung C; Yabe J; Ma D; Fischer I Subcell Biochem; 1998; 31():527-61. PubMed ID: 9932505 [TBL] [Abstract][Full Text] [Related]
58. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Yabe JT; Wang FS; Chylinski T; Katchmar T; Shea TB Cell Motil Cytoskeleton; 2001 Sep; 50(1):1-12. PubMed ID: 11746668 [TBL] [Abstract][Full Text] [Related]
59. cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Shetty KT; Link WT; Pant HC Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6844-8. PubMed ID: 8341707 [TBL] [Abstract][Full Text] [Related]
60. Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. Shea TB; Sihag RK; Nixon RA J Neurochem; 1990 Nov; 55(5):1784-92. PubMed ID: 2213024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]