BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8714677)

  • 21. Pathogenesis of two axonopathies does not require axonal neurofilaments.
    Eyer J; Cleveland DW; Wong PC; Peterson AC
    Nature; 1998 Feb; 391(6667):584-7. PubMed ID: 9468135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis.
    Morrison BM; Morrison JH; Gordon JW
    J Exp Zool; 1998 Sep-Oct 1; 282(1-2):32-47. PubMed ID: 9723164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects?
    Julien JP; Beaulieu JM
    J Neurol Sci; 2000 Nov; 180(1-2):7-14. PubMed ID: 11090858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurofilaments in health and disease.
    Gotow T
    Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS).
    Tomkins J; Usher P; Slade JY; Ince PG; Curtis A; Bushby K; Shaw PJ
    Neuroreport; 1998 Dec; 9(17):3967-70. PubMed ID: 9875737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin.
    Millecamps S; Robertson J; Lariviere R; Mallet J; Julien JP
    J Neurochem; 2006 Aug; 98(3):926-38. PubMed ID: 16787413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuron-glia interactions underlie ALS-like axonal cytoskeletal pathology.
    King AE; Dickson TC; Blizzard CA; Woodhouse A; Foster SS; Chung RS; Vickers JC
    Neurobiol Aging; 2011 Mar; 32(3):459-69. PubMed ID: 19427060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deregulation of PKN1 activity disrupts neurofilament organisation and axonal transport.
    Manser C; Stevenson A; Banner S; Davies J; Tudor EL; Ono Y; Leigh PN; McLoughlin DM; Shaw CE; Miller CCJ
    FEBS Lett; 2008 Jun; 582(15):2303-2308. PubMed ID: 18519042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit.
    Beaulieu JM; Jacomy H; Julien JP
    J Neurosci; 2000 Jul; 20(14):5321-8. PubMed ID: 10884316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease.
    Tu PH; Gurney ME; Julien JP; Lee VM; Trojanowski JQ
    Lab Invest; 1997 Apr; 76(4):441-56. PubMed ID: 9111507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS.
    Lobsiger CS; Garcia ML; Ward CM; Cleveland DW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10351-6. PubMed ID: 16002469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1.
    Nguyen MD; Larivière RC; Julien JP
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):12306-11. PubMed ID: 11050249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurofilaments, radial growth of axons, and mechanisms of motor neuron disease.
    Williamson TL; Marszalek JR; Vechio JD; Bruijn LI; Lee MK; Xu Z; Brown RH; Cleveland DW
    Cold Spring Harb Symp Quant Biol; 1996; 61():709-23. PubMed ID: 9246497
    [No Abstract]   [Full Text] [Related]  

  • 34. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker.
    Boylan K; Yang C; Crook J; Overstreet K; Heckman M; Wang Y; Borchelt D; Shaw G
    J Neurochem; 2009 Dec; 111(5):1182-91. PubMed ID: 19765193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple test to monitor the motor dysfunction in a transgenic mouse model of amyotrophic lateral sclerosis.
    Collard JF; Julien JP
    J Psychiatry Neurosci; 1995 Jan; 20(1):80-2. PubMed ID: 7865504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease.
    Lee MK; Marszalek JR; Cleveland DW
    Neuron; 1994 Oct; 13(4):975-88. PubMed ID: 7946341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurofilaments, free radicals, excitotoxins, and amyotrophic lateral sclerosis.
    al-Chalabi A; Powell JF; Leigh PN
    Muscle Nerve; 1995 May; 18(5):540-5. PubMed ID: 7739643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs.
    Campos-Melo D; Hawley ZCE; Strong MJ
    Mol Brain; 2018 Jul; 11(1):43. PubMed ID: 30029677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
    Jaarsma D; Haasdijk ED; Grashorn JA; Hawkins R; van Duijn W; Verspaget HW; London J; Holstege JC
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):623-43. PubMed ID: 11114261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations in neural intermediate filament organization: functional implications and the induction of pathological changes related to motor neuron disease.
    Straube-West K; Loomis PA; Opal P; Goldman RD
    J Cell Sci; 1996 Sep; 109 ( Pt 9)():2319-29. PubMed ID: 8886982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.