BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8717051)

  • 1. Mechanically stretched chromosomes as targets for high-resolution FISH mapping.
    Laan M; Kallioniemi OP; Hellsten E; Alitalo K; Peltonen L; Palotie A
    Genome Res; 1995 Aug; 5(1):13-20. PubMed ID: 8717051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes.
    Jiang J; Hulbert SH; Gill BS; Ward DC
    Mol Gen Genet; 1996 Oct; 252(5):497-502. PubMed ID: 8914510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution fluorescence in situ hybridization: a new approach in genome mapping.
    Palotie A; Heiskanen M; Laan M; Horelli-Kuitunen N
    Ann Med; 1996 Apr; 28(2):101-6. PubMed ID: 8732637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual mapping by fiber-FISH.
    Heiskanen M; Hellsten E; Kallioniemi OP; Mäkelä TP; Alitalo K; Peltonen L; Palotie A
    Genomics; 1995 Nov; 30(1):31-6. PubMed ID: 8595900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation.
    Koo DH; Jiang J
    Plant J; 2009 Aug; 59(3):509-16. PubMed ID: 19392688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ hybridization of fluorescent probes on chromosomes, nuclei or stretched DNA: applications in physical mapping and characterization of genomic rearrangements.
    Desmaze C; Aurias A
    Cell Mol Biol (Noisy-le-grand); 1995 Nov; 41(7):925-31. PubMed ID: 8595371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes.
    Haaf T; Ward DC
    Hum Mol Genet; 1994 May; 3(5):697-709. PubMed ID: 8081355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes.
    Bustamante FO; Aliyeva-Schnorr L; Fuchs J; Beier S; Houben A
    Cytogenet Genome Res; 2017; 152(2):90-96. PubMed ID: 28719910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution ordering of YAC contigs using extended chromatin and chromosomes.
    Haaf T; Ward DC
    Hum Mol Genet; 1994 Apr; 3(4):629-33. PubMed ID: 8069309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mapping of chromosome 17 cosmids by fluorescence in situ hybridization and digital image analysis.
    Kallioniemi OP; Kallioniemi A; Mascio L; Sudar D; Pinkel D; Deaven L; Gray J
    Genomics; 1994 Mar; 20(1):125-8. PubMed ID: 8020940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical mapping of mouse collagen genes on chromosome 10 by high-resolution FISH.
    Sallinen R; Latvanlehto A; Kvist AP; Rehn M; Eerola I; Chu ML; Bonaldo P; Saitta B; Bressan GM; Pihlajaniemi T; Vuorio E; Palotie A; Wessman M; Horelli-Kuitunen N
    Mamm Genome; 2001 May; 12(5):340-6. PubMed ID: 11331940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolour fluorescence in situ hybridisation to order small, single-copy probes on metaphase chromosomes.
    Heppell-Parton AC; Albertson DG; Fishpool R; Rabbitts PH
    Cytogenet Cell Genet; 1994; 66(1):42-7. PubMed ID: 8275707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of FISH in positional cloning: an example on 13q22.
    Laan M; Isosomppi J; Klockars T; Peltonen L; Palotie A
    Genome Res; 1996 Oct; 6(10):1002-12. PubMed ID: 8908520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution cytogenetic mapping of the short arm of chromosome 1 with newly isolated 411 cosmid markers by fluorescence in situ hybridization: the precise order of 18 markers on 1p36.1 on prophase chromosomes and "stretched" DNAs.
    Ariyama T; Inazawa J; Ezaki T; Nakamura Y; Horii A; Abe T
    Genomics; 1995 Jan; 25(1):114-23. PubMed ID: 7774908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence in situ hybridization on metaphase chromosomes with biotinylated probes. In situ hybridization, biotin labeling, cosmids, gene mapping, oncogene amplification.
    Cherif D; Derré J; Berger R
    Nouv Rev Fr Hematol (1978); 1990; 32(6):459-60. PubMed ID: 2101880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for detecting pericentric inversions using COD-FISH.
    Bailey SM; Meyne J; Cornforth MN; McConnell TS; Goodwin EH
    Cytogenet Cell Genet; 1996; 75(4):248-53. PubMed ID: 9067435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei.
    Trask BJ; Massa H; Kenwrick S; Gitschier J
    Am J Hum Genet; 1991 Jan; 48(1):1-15. PubMed ID: 1985451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin.
    Heng HH; Squire J; Tsui LC
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9509-13. PubMed ID: 1384055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers.
    Cheng Z; Buell CR; Wing RA; Jiang J
    Chromosome Res; 2002; 10(5):379-87. PubMed ID: 12296520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization.
    Trask BJ; Allen S; Massa H; Fertitta A; Sachs R; van den Engh G; Wu M
    Cold Spring Harb Symp Quant Biol; 1993; 58():767-75. PubMed ID: 7956093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.