These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8717091)

  • 1. Effects of continuous flow microwave treatment on chemical and microbiological characteristics of milk.
    Villamiel M; López-Fandiño R; Corzo N; Martínez-Castro I; Olano A
    Z Lebensm Unters Forsch; 1996 Jan; 202(1):15-8. PubMed ID: 8717091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of storage at 4 degrees C on the physicochemical and renneting properties of milk: a comparison of caprine, ovine and bovine milks.
    Raynal K; Remeuf F
    J Dairy Res; 2000 May; 67(2):199-207. PubMed ID: 10840673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiochemical properties, microstructure, and probiotic survivability of nonfat goats' milk yogurt using heat-treated whey protein concentrate as fat replacer.
    Zhang T; McCarthy J; Wang G; Liu Y; Guo M
    J Food Sci; 2015 Apr; 80(4):M788-94. PubMed ID: 25808084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage.
    Clare DA; Bang WS; Cartwright G; Drake MA; Coronel P; Simunovic J
    J Dairy Sci; 2005 Dec; 88(12):4172-82. PubMed ID: 16291608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The essential mineral concentration of Torba yoghurts and their wheys compared with yoghurt made with cows', ewes' and goats' milks.
    Güler Z; Sanal H
    Int J Food Sci Nutr; 2009 Mar; 60(2):153-64. PubMed ID: 18608571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical and sensory characteristics of yoghurts made from goat and cow milk.
    Costa RG; Beltrão Filho EM; de Sousa S; da Cruz GR; Queiroga Rde C; da Cruz EN
    Anim Sci J; 2016 May; 87(5):703-9. PubMed ID: 26867520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-home pasteurization of raw goat's milk by microwave treatment.
    Thompson JS; Thompson A
    Int J Food Microbiol; 1990 Jan; 10(1):59-64. PubMed ID: 2397150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality.
    Tremonte P; Tipaldi L; Succi M; Pannella G; Falasca L; Capilongo V; Coppola R; Sorrentino E
    J Dairy Sci; 2014; 97(6):3314-20. PubMed ID: 24704234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fluorimetric FAST method, a simple tool for the optimization of microwave pasteurization of milk.
    Tessier FJ; Gadonna-Widehem P; Laguerre JC
    Mol Nutr Food Res; 2006 Sep; 50(9):793-8. PubMed ID: 16917811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of cows' milk in goats' milk and cheese by capillary electrophoresis of the whey protein fractions.
    Cartoni G; Coccioli F; Jasionowska R; Masci M
    J Chromatogr A; 1999 Jun; 846(1-2):135-41. PubMed ID: 10420605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chemical and microbiological studies of microwave-treated milk].
    Demel S; Steiner I; Washüttl J; Kroyer G
    Z Ernahrungswiss; 1990 Dec; 29(4):299-303. PubMed ID: 2080642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the percentages of cows', goats' and ewes' milk in "Iberico" cheese by electrophoretic analysis in whey proteins.
    Molina E; Ramos M; Martin-Alvarez PJ
    Z Lebensm Unters Forsch; 1995 Oct; 201(4):331-5. PubMed ID: 8525701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microbiological testing on subsequent mid-infrared milk component analysis of the same milk sample.
    Wojciechowski KL; Melilli C; Barbano DM
    J Dairy Sci; 2014 Sep; 97(9):5885-97. PubMed ID: 25022674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of high pressure and heat treatment on the mineral balance of goats' milk.
    de la Fuente MA; Olano A; Casal V; Juárez M
    J Dairy Res; 1999 Feb; 66(1):65-72. PubMed ID: 10191474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From time temperature integrator kinetics to time temperature integrator tolerance levels: heat-treated milk.
    Claeys WL; Smout C; Van Loey AM; Hendrickx ME
    Biotechnol Prog; 2004; 20(1):1-12. PubMed ID: 14763817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.
    Caplan Z; Melilli C; Barbano DM
    J Dairy Sci; 2013 Apr; 96(4):2011-2019. PubMed ID: 23415516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of protein, nonprotein-soluble components, and lactose concentrations on the irreversible thermal denaturation of beta-lactoglobulin and alpha-lactalbumin in skim milk.
    Anema SG; Lee SK; Klostermeyer H
    J Agric Food Chem; 2006 Sep; 54(19):7339-48. PubMed ID: 16968103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk.
    Villamiel M; de Jong P
    J Agric Food Chem; 2000 Feb; 48(2):472-8. PubMed ID: 10691659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.
    Milkovska-Stamenova S; Hoffmann R
    Food Chem; 2017 Apr; 221():489-495. PubMed ID: 27979232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration.
    Oldfield DJ; Singh H; Taylor MW
    J Dairy Res; 2005 Aug; 72(3):369-78. PubMed ID: 16174369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.