These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 8718529)
41. Electrostatic interaction between stereocilia: II. Influence on the mechanical properties of the hair bundle. Dolgobrodov SG; Lukashkin AN; Russell IJ Hear Res; 2000 Dec; 150(1-2):94-103. PubMed ID: 11077195 [TBL] [Abstract][Full Text] [Related]
42. Adaptation in hair cells. Eatock RA Annu Rev Neurosci; 2000; 23():285-314. PubMed ID: 10845066 [TBL] [Abstract][Full Text] [Related]
43. Integrating the active process of hair cells with cochlear function. Hudspeth AJ Nat Rev Neurosci; 2014 Sep; 15(9):600-14. PubMed ID: 25096182 [TBL] [Abstract][Full Text] [Related]
44. Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Géléoc GS; Holt JR Nat Neurosci; 2003 Oct; 6(10):1019-20. PubMed ID: 12973354 [TBL] [Abstract][Full Text] [Related]
45. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Zhao Y; Yamoah EN; Gillespie PG Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15469-74. PubMed ID: 8986835 [TBL] [Abstract][Full Text] [Related]
46. Stiffness of hair bundles in the chick cochlea. Szymko YM; Dimitri PS; Saunders JC Hear Res; 1992 May; 59(2):241-9. PubMed ID: 1618714 [TBL] [Abstract][Full Text] [Related]
47. A comparison of hair bundle mechanoreceptors in sea anemones and vertebrate systems. Watson GM; Mire P Curr Top Dev Biol; 1999; 43():51-84. PubMed ID: 9891883 [TBL] [Abstract][Full Text] [Related]
48. A molecular level prototype for mechanoelectrical transducer in mammalian hair cells. Park J; Wei GW J Comput Neurosci; 2013 Oct; 35(2):231-41. PubMed ID: 23625048 [TBL] [Abstract][Full Text] [Related]
49. The role of fluid inertia in mechanical stimulation of hair cells. Freeman DM; Weiss TF Hear Res; 1988 Sep; 35(2-3):201-7. PubMed ID: 3058672 [TBL] [Abstract][Full Text] [Related]
50. Measurements of the stiffness map challenge a basic tenet of cochlear theories. Naidu RC; Mountain DC Hear Res; 1998 Oct; 124(1-2):124-31. PubMed ID: 9822910 [TBL] [Abstract][Full Text] [Related]
51. An active motor model for adaptation by vertebrate hair cells. Assad JA; Corey DP J Neurosci; 1992 Sep; 12(9):3291-309. PubMed ID: 1527581 [TBL] [Abstract][Full Text] [Related]
52. Two mechanisms for transducer adaptation in vertebrate hair cells. Holt JR; Corey DP Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11730-5. PubMed ID: 11050202 [TBL] [Abstract][Full Text] [Related]
53. Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection. Mulhall EM; Ward A; Yang D; Koussa MA; Corey DP; Wong WP Nat Commun; 2021 Feb; 12(1):849. PubMed ID: 33558532 [TBL] [Abstract][Full Text] [Related]
54. The transfer function of the cochlea. Barrett TW Q Rev Biophys; 1978 Feb; 11(1):1-38. PubMed ID: 345320 [No Abstract] [Full Text] [Related]
55. [Recent aspects of the mechanism of irritation of the hair cells]. TRINCKER D Acta Otolaryngol Suppl; 1961; 163():67-75. PubMed ID: 13778088 [No Abstract] [Full Text] [Related]
56. Signal selection by cortical feedback. King AJ Curr Biol; 1997 Feb; 7(2):R85-8. PubMed ID: 9081670 [TBL] [Abstract][Full Text] [Related]
57. A mean-field approach to elastically coupled hair bundles. Dierkes K; Jülicher F; Lindner B Eur Phys J E Soft Matter; 2012 May; 35(5):37. PubMed ID: 22623035 [TBL] [Abstract][Full Text] [Related]
59. The mechanical properties of hair. I. The dynamic sonic modulus. Goldsmith LA; Baden HP J Invest Dermatol; 1970 Oct; 55(4):256-9. PubMed ID: 5471888 [No Abstract] [Full Text] [Related]
60. Tip links and hair cells. Pickles JO Curr Biol; 1992 Jan; 2(1):48-50. PubMed ID: 15336070 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]