These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8718705)

  • 1. Coupled Markov chain model: characterization of membrane channel currents with multiple conductance sublevels as partially coupled elementary pores.
    Chung SH; Kennedy RA
    Math Biosci; 1996 Apr; 133(2):111-37. PubMed ID: 8718705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling.
    Qin F
    Biophys J; 2004 Mar; 86(3):1488-501. PubMed ID: 14990476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of single ion channel data incorporating time-interval omission and sampling.
    The YK; Timmer J
    J R Soc Interface; 2006 Feb; 3(6):87-97. PubMed ID: 16849220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description of interacting channel gating using a stochastic Markovian model.
    Manivannan K; Mathias RT; Gudowska-Nowak E
    Bull Math Biol; 1996 Jan; 58(1):141-74. PubMed ID: 8819758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Discrete parameters of current oscillation in single ion channels].
    Geletiuk VI; Kazachenko VN
    Biofizika; 1987; 32(2):269-72. PubMed ID: 2437961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive learning algorithms for nernst potential and I-V curves in nerve cell membrane ion channels modeled as hidden Markov models.
    Krishnamurthy V; Chung SH
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):266-78. PubMed ID: 15376918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels.
    Zheng J; Vankataramanan L; Sigworth FJ
    J Gen Physiol; 2001 Nov; 118(5):547-64. PubMed ID: 11696611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic Markovian modeling of electrophysiology of ion channels: reconstruction of standard deviations in macroscopic currents.
    Geneser SE; Kirby RM; Xiu D; Sachse FB
    J Theor Biol; 2007 Apr; 245(4):627-37. PubMed ID: 17204291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences.
    Chung SH; Krishnamurthy V; Moore JB
    Philos Trans R Soc Lond B Biol Sci; 1991 Dec; 334(1271):357-84. PubMed ID: 1723807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical properties of ion channel records. Part II: estimation from the macroscopic current.
    Nekouzadeh A; Rudy Y
    Math Biosci; 2007 Nov; 210(1):315-34. PubMed ID: 17544011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of multichannel patch clamp recordings by hidden Markov models.
    Klein S; Timmer J; Honerkamp J
    Biometrics; 1997 Sep; 53(3):870-84. PubMed ID: 9333349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superposition properties of interacting ion channels.
    Keleshian AM; Yeo GF; Edeson RO; Madsen BW
    Biophys J; 1994 Aug; 67(2):634-40. PubMed ID: 7524711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled hidden markov models for dynamically adapting patch clamp experiment to estimate Nernst potential of single-ion channels.
    Krishnamurthy V; Yin GG
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):115-25. PubMed ID: 16805108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuation analysis of patch-clamp or whole-cell recordings containing many single channels.
    Chung SH; Pulford G
    J Neurosci Methods; 1993 Dec; 50(3):369-84. PubMed ID: 7512171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ion single channel signal restoration and parameters' estimation based on the hidden Markov models].
    Han XD; Liu XM; Pan H; Tao M; Lin JR
    Zhongguo Yi Liao Qi Xie Za Zhi; 2001 Nov; 25(6):311-5, 346. PubMed ID: 12583259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markov models for ion channels: versatility versus identifiability and speed.
    Fink M; Noble D
    Philos Trans A Math Phys Eng Sci; 2009 Jun; 367(1896):2161-79. PubMed ID: 19414451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels.
    Kunze DL; Lacerda AE; Wilson DL; Brown AM
    J Gen Physiol; 1985 Nov; 86(5):691-719. PubMed ID: 2415670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-channel gating mechanisms: model identification and parameter estimation from single channel recordings.
    Ball FG; Sansom MS
    Proc R Soc Lond B Biol Sci; 1989 May; 236(1285):385-416. PubMed ID: 2471982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified approach to burst properties of multiconductance single ion channels.
    Ball FG; Milne RK; Yeo GF
    Math Med Biol; 2004 Sep; 21(3):205-45. PubMed ID: 15471246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On identification of Na(+) channel gating schemes using moving-average filtered hidden Markov models.
    Michalek S; Lerche H; Wagner M; Mitrović N; Schiebe M; Lehmann-Horn F; Timmer J
    Eur Biophys J; 1999; 28(7):605-9. PubMed ID: 10541799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.