These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8718864)
1. Substitution of serine for glycine-91 in the HXGH motif of CTP:phosphocholine cytidylyltransferase implicates this motif in CTP binding. Veitch DP; Cornell RB Biochemistry; 1996 Aug; 35(33):10743-50. PubMed ID: 8718864 [TBL] [Abstract][Full Text] [Related]
2. Identification of lysine 122 and arginine 196 as important functional residues of rat CTP:phosphocholine cytidylyltransferase alpha. Helmink BA; Braker JD; Kent C; Friesen JA Biochemistry; 2003 May; 42(17):5043-51. PubMed ID: 12718547 [TBL] [Abstract][Full Text] [Related]
3. The role of histidine residues in the HXGH site of CTP:phosphocholine cytidylyltransferase in CTP binding and catalysis. Veitch DP; Gilham D; Cornell RB Eur J Biochem; 1998 Jul; 255(1):227-34. PubMed ID: 9692923 [TBL] [Abstract][Full Text] [Related]
4. Expression of wild-type and mutant rat liver CTP: phosphocholine cytidylyltransferase in a cytidylyltransferase-deficient Chinese hamster ovary cell line. Sweitzer TD; Kent C Arch Biochem Biophys; 1994 May; 311(1):107-16. PubMed ID: 8185307 [TBL] [Abstract][Full Text] [Related]
5. Characterization of beta-galactosidase mutations Asp332-->Asn and Arg148-->Ser, and a polymorphism, Ser532-->Gly, in a case of GM1 gangliosidosis. Zhang S; Bagshaw R; Hilson W; Oho Y; Hinek A; Clarke JT; Callahan JW Biochem J; 2000 Jun; 348 Pt 3(Pt 3):621-32. PubMed ID: 10839995 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli. Lunn FA; Macleod TJ; Bearne SL Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824 [TBL] [Abstract][Full Text] [Related]
7. Cloning and expression of CTP:phosphoethanolamine cytidylyltransferase cDNA from rat liver. Bladergroen BA; Houweling M; Geelen MJ; van Golde LM Biochem J; 1999 Oct; 343 Pt 1(Pt 1):107-14. PubMed ID: 10493918 [TBL] [Abstract][Full Text] [Related]
8. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Cornell RB; Kalmar GB; Kay RJ; Johnson MA; Sanghera JS; Pelech SL Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):699-708. PubMed ID: 7654214 [TBL] [Abstract][Full Text] [Related]
9. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis. Gong J; Kay CJ; Barber MJ; Ferreira GC Biochemistry; 1996 Nov; 35(45):14109-17. PubMed ID: 8916896 [TBL] [Abstract][Full Text] [Related]
10. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. Yang W; Boggs KP; Jackowski S J Biol Chem; 1995 Oct; 270(41):23951-7. PubMed ID: 7592590 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the functional contributions of invariant serine residues in yeast mevalonate diphosphate decarboxylase. Krepkiy DV; Miziorko HM Biochemistry; 2005 Feb; 44(7):2671-7. PubMed ID: 15709780 [TBL] [Abstract][Full Text] [Related]
12. Purification and kinetic characterization of CTP:phosphocholine cytidylyltransferase from Saccharomyces cerevisiae. Friesen JA; Park YS; Kent C Protein Expr Purif; 2001 Feb; 21(1):141-8. PubMed ID: 11162399 [TBL] [Abstract][Full Text] [Related]
13. Identification of Ser424 as the protein kinase A phosphorylation site in CTP synthetase from Saccharomyces cerevisiae. Park TS; Ostrander DB; Pappas A; Carman GM Biochemistry; 1999 Jul; 38(27):8839-48. PubMed ID: 10393561 [TBL] [Abstract][Full Text] [Related]
14. Expression of rat CTP:phosphocholine cytidylyltransferase in insect cells using a baculovirus vector. Luche MM; Rock CO; Jackowski S Arch Biochem Biophys; 1993 Feb; 301(1):114-8. PubMed ID: 8382903 [TBL] [Abstract][Full Text] [Related]
15. Baculovirus-mediated expression of rat liver CTP:phosphocholine cytidylyltransferase. MacDonald JI; Kent C Protein Expr Purif; 1993 Feb; 4(1):1-7. PubMed ID: 8381041 [TBL] [Abstract][Full Text] [Related]
16. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Arnold RS; Cornell RB Biochemistry; 1996 Jul; 35(30):9917-24. PubMed ID: 8703966 [TBL] [Abstract][Full Text] [Related]
17. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease. Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids. Richard SB; Lillo AM; Tetzlaff CN; Bowman ME; Noel JP; Cane DE Biochemistry; 2004 Sep; 43(38):12189-97. PubMed ID: 15379557 [TBL] [Abstract][Full Text] [Related]
19. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior. Meyer CR; Bork JA; Nadler S; Yirsa J; Preiss J Arch Biochem Biophys; 1998 May; 353(1):152-9. PubMed ID: 9578610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]