These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8718866)

  • 1. Mitochondrial phosphate transport protein. replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path.
    Phelps A; Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1996 Aug; 35(33):10757-62. PubMed ID: 8718866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial phosphate transport protein. Reversions of inhibitory conservative mutations identify four helices and a nonhelix protein segment with transmembrane interactions and Asp39, Glu137, and Ser158 as nonessential for transport.
    Phelps A; Briggs C; Haefele A; Mincone L; Ligeti E; Wohlrab H
    Biochemistry; 2001 Feb; 40(7):2080-6. PubMed ID: 11329276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel inter- and intrasubunit contacts between transport-relevant residues of the homodimeric mitochondrial phosphate transport protein.
    Wohlrab H
    Biochem Biophys Res Commun; 2004 Jul; 320(3):685-8. PubMed ID: 15240102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single replacement constructs of all hydroxyl, basic, and acidic amino acids identify new function and structure-sensitive regions of the mitochondrial phosphate transport protein.
    Wohlrab H; Annese V; Haefele A
    Biochemistry; 2002 Mar; 41(9):3254-61. PubMed ID: 11863464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochemistry; 2003 Nov; 42(44):12941-9. PubMed ID: 14596609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1.
    Griffith DA; Pajor AM
    Biochemistry; 1999 Jun; 38(23):7524-31. PubMed ID: 10360950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of functional amino acids in the Nramp family by a combination of evolutionary analysis and biophysical studies of metal and proton cotransport in vivo.
    Chaloupka R; Courville P; Veyrier F; Knudsen B; Tompkins TA; Cellier MF
    Biochemistry; 2005 Jan; 44(2):726-33. PubMed ID: 15641799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of phosphatidylinositol-specific phospholipase C: a unified view of the mechanism of catalysis.
    Hondal RJ; Zhao Z; Kravchuk AV; Liao H; Riddle SR; Yue X; Bruzik KS; Tsai MD
    Biochemistry; 1998 Mar; 37(13):4568-80. PubMed ID: 9521777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis.
    Fang HM; Wang Y
    Biochem J; 2002 Dec; 368(Pt 2):641-7. PubMed ID: 12207560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of proton transfer inhibition by Cd(2+) binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues.
    Paddock ML; Sagle L; Tehrani A; Beatty JT; Feher G; Okamura MY
    Biochemistry; 2003 Aug; 42(32):9626-32. PubMed ID: 12911304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR determination of pKa values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme-inhibitor contact position of the turkey ovomucoid third domain.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Mar; 42(10):2847-56. PubMed ID: 12627950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of charged and potentially proton-carrying residues in the beta subunit of the proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. Characterization of the beta H91, beta D392, and beta K424 mutants.
    Hu X; Zhang J; Fjellström O; Bizouarn T; Rydström J
    Biochemistry; 1999 Feb; 38(5):1652-8. PubMed ID: 9931033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141).
    Wohlrab H; Briggs C
    Biochemistry; 1994 Aug; 33(32):9371-5. PubMed ID: 8068613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.