BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

890 related articles for article (PubMed ID: 8718883)

  • 1. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase.
    Aubert SD; Li Y; Raushel FM
    Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.
    Vanhooke JL; Benning MM; Raushel FM; Holden HM
    Biochemistry; 1996 May; 35(19):6020-5. PubMed ID: 8634243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbations to the active site of phosphotriesterase.
    Kuo JM; Chae MY; Raushel FM
    Biochemistry; 1997 Feb; 36(8):1982-8. PubMed ID: 9047295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic requirements for the efficient enzyme-catalyzed hydrolysis of thiosialosides.
    Narine AA; Watson JN; Bennet AJ
    Biochemistry; 2006 Aug; 45(30):9319-26. PubMed ID: 16866378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of copper as a paramagnetic probe for the binuclear metal center of phosphotriesterase.
    Chae MY; Omburo GA; Lindahl PA; Raushel FM
    Arch Biochem Biophys; 1995 Feb; 316(2):765-72. PubMed ID: 7864632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes.
    Samples CR; Raushel FM; DeRose VJ
    Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds.
    Li Y; Aubert SD; Raushel FM
    J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity.
    diSioudi B; Grimsley JK; Lai K; Wild JR
    Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution.
    Yoshida A; Sun S; Piccirilli JA
    Nat Struct Biol; 1999 Apr; 6(4):318-21. PubMed ID: 10201397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors.
    Bogumil R; Kappl R; Hüttermann J; Witzel H
    Biochemistry; 1997 Mar; 36(9):2345-52. PubMed ID: 9054539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions.
    Nikolic-Hughes I; O'brien PJ; Herschlag D
    J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM
    J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
    Sam MD; Perona JJ
    Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.