These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 8718939)
1. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Bordji K; Jouzeau JY; Mainard D; Payan E; Netter P; Rie KT; Stucky T; Hage-Ali M Biomaterials; 1996 May; 17(9):929-40. PubMed ID: 8718939 [TBL] [Abstract][Full Text] [Related]
2. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related]
4. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement. Khandaker M; Riahinezhad S; Li Y; Vaughan MB; Sultana F; Morris TL; Phinney L; Hossain K Biomed Mater Eng; 2016 Nov; 27(5):461-474. PubMed ID: 27885994 [TBL] [Abstract][Full Text] [Related]
5. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
6. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Ku CH; Pioletti DP; Browne M; Gregson PJ Biomaterials; 2002 Mar; 23(6):1447-54. PubMed ID: 11829440 [TBL] [Abstract][Full Text] [Related]
7. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells. Huang HH Biochem Biophys Res Commun; 2004 Feb; 314(3):787-92. PubMed ID: 14741704 [TBL] [Abstract][Full Text] [Related]
8. Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology. Gordin DM; Gloriant T; Chane-Pane V; Busardo D; Mitran V; Höche D; Vasilescu C; Drob SI; Cimpean A J Mater Sci Mater Med; 2012 Dec; 23(12):2953-66. PubMed ID: 22918550 [TBL] [Abstract][Full Text] [Related]
9. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy. Wang S; Ma Z; Liao Z; Song J; Yang K; Liu W Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():123-32. PubMed ID: 26354247 [TBL] [Abstract][Full Text] [Related]
11. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V. Marin E; Offoiach R; Lanzutti A; Regis M; Fusi S; Fedrizzi L Biomed Mater Eng; 2014; 24(1):581-92. PubMed ID: 24211942 [TBL] [Abstract][Full Text] [Related]
12. Conjoint corrosion and wear in titanium alloys. Khan MA; Williams RL; Williams DF Biomaterials; 1999 Apr; 20(8):765-72. PubMed ID: 10353659 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical corrosion of titanium and titanium-based alloys. Kuphasuk C; Oshida Y; Andres CJ; Hovijitra ST; Barco MT; Brown DT J Prosthet Dent; 2001 Feb; 85(2):195-202. PubMed ID: 11208211 [TBL] [Abstract][Full Text] [Related]
14. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480 [TBL] [Abstract][Full Text] [Related]
16. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. Ito A; Okazaki Y; Tateishi T; Ito Y J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029 [TBL] [Abstract][Full Text] [Related]
17. Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments. Maurer AM; Brown SA; Payer JH; Merritt K; Kawalec JS J Orthop Res; 1993 Nov; 11(6):865-73. PubMed ID: 8283332 [TBL] [Abstract][Full Text] [Related]
18. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V. Challa VS; Mali S; Misra RD J Biomed Mater Res A; 2013 Jul; 101(7):2083-9. PubMed ID: 23349101 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Different Thermo-Chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties. Grabarczyk J; Batory D; Kaczorowski W; Pązik B; Januszewicz B; Burnat B; Czerniak-Reczulska M; Makówka M; Niedzielski P Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33213027 [TBL] [Abstract][Full Text] [Related]