These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8718976)

  • 1. Significance of interstitial bone ingrowth under load-bearing conditions: a comparison between solid and porous implant materials.
    Chang YS; Oka M; Kobayashi M; Gu HO; Li ZL; Nakamura T; Ikada Y
    Biomaterials; 1996 Jun; 17(11):1141-8. PubMed ID: 8718976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation and remodeling around implanted materials under load-bearing conditions.
    Chang YS; Oka M; Kobayashi M; Gu HO; Li ZL; Kitsugi T; Nakamura T
    Clin Mater; 1994; 17(4):181-7. PubMed ID: 10172487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of various structure treatments on histological fixation of titanium implants.
    Chang YS; Gu HO; Kobayashi M; Oka M
    J Arthroplasty; 1998 Oct; 13(7):816-25. PubMed ID: 9802671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of artificial articular cartilage.
    Oka M; Ushio K; Kumar P; Ikeuchi K; Hyon SH; Nakamura T; Fujita H
    Proc Inst Mech Eng H; 2000; 214(1):59-68. PubMed ID: 10718051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic osteochondral replacement of the femoral articular surface.
    Oka M; Chang YS; Nakamura T; Ushio K; Toguchida J; Gu HO
    J Bone Joint Surg Br; 1997 Nov; 79(6):1003-7. PubMed ID: 9393921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implant fixation by bone ingrowth.
    Kienapfel H; Sprey C; Wilke A; Griss P
    J Arthroplasty; 1999 Apr; 14(3):355-68. PubMed ID: 10220191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of peak value and duration of the interfacial shear load in evaluation of the bone-implant interface.
    Chang YS; Kobayashi M; Li ZL; Oka M; Nakamura T
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):773-9. PubMed ID: 12957565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite.
    Li ZL; Kitsugi T; Yamamuro T; Chang YS; Senaha Y; Takagi H; Nakamura T; Oka M
    J Biomed Mater Res; 1995 Sep; 29(9):1081-8. PubMed ID: 8567706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial.
    Bobyn JD; Stackpool GJ; Hacking SA; Tanzer M; Krygier JJ
    J Bone Joint Surg Br; 1999 Sep; 81(5):907-14. PubMed ID: 10530861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines.
    Pura JA; Bobyn JD; Tanzer M
    Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study.
    Tanzer M; Chuang PJ; Ngo CG; Song L; TenHuisen KS
    Bone Joint J; 2019 Jun; 101-B(6_Supple_B):62-67. PubMed ID: 31146557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of disodium (1-hydroxythylidene) diphosphonate on bone ingrowth into porous, titanium fiber-mesh implants.
    Kitsugi T; Yamamuro T; Nakamura T; Oka M
    J Arthroplasty; 1995 Apr; 10(2):245-53. PubMed ID: 7798108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Vivo response to a novel pillared surface morphology for osseointegration in an ovine model.
    Causey GC; Picha GJ; Price J; Pelletier MH; Wang T; Walsh WR
    J Mech Behav Biomed Mater; 2021 Jul; 119():104462. PubMed ID: 33839536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite and fluorapatite coatings for fixation of weight loaded implants.
    Overgaard S; Lind M; Glerup H; Grundvig S; Bünger C; Søballe K
    Clin Orthop Relat Res; 1997 Mar; (336):286-96. PubMed ID: 9060515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of parathyroid hormone treatment on implant fixation.
    Daugaard H
    Dan Med Bull; 2011 Sep; 58(9):B4317. PubMed ID: 21893015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irregular porous titanium enhances implant stability and bone ingrowth in an intra-articular ovine model.
    Changoor A; Suderman RP; Alshaygy I; Fuhrmann A; Akens MK; Safir O; Grynpas MD; Kuzyk PRT
    J Orthop Res; 2022 Oct; 40(10):2294-2307. PubMed ID: 35146795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cranial bone apposition and ingrowth in a porous nickel-titanium implant.
    Simske SJ; Sachdeva R
    J Biomed Mater Res; 1995 Apr; 29(4):527-33. PubMed ID: 7622538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osseointegration of a hydroxyapatite-coated multilayered mesh stem.
    Kusakabe H; Sakamaki T; Nihei K; Oyama Y; Yanagimoto S; Ichimiya M; Kimura J; Toyama Y
    Biomaterials; 2004 Jul; 25(15):2957-69. PubMed ID: 14967528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits.
    Itälä AI; Ylänen HO; Ekholm C; Karlsson KH; Aro HT
    J Biomed Mater Res; 2001; 58(6):679-83. PubMed ID: 11745521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.