These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8718986)
1. Induced termination of fibrillation. Abildskov JA J Cardiovasc Electrophysiol; 1996 Jan; 7(1):71-81. PubMed ID: 8718986 [TBL] [Abstract][Full Text] [Related]
2. Additions to the wavelet hypothesis of cardiac fibrillation. Abildskov JA J Cardiovasc Electrophysiol; 1994 Jun; 5(6):553-9. PubMed ID: 8087298 [TBL] [Abstract][Full Text] [Related]
3. Effects of heart rate on vulnerability to fibrillation in a computer model. Abildskov JA; Lux RL J Electrocardiol; 1997 Oct; 30(4):307-13. PubMed ID: 9375907 [TBL] [Abstract][Full Text] [Related]
4. Effects of premature responses on vulnerability to fibrillation in a computer model. Abildskov JA; Lux RL J Electrocardiol; 1996 Jul; 29(3):213-21. PubMed ID: 8854332 [TBL] [Abstract][Full Text] [Related]
5. Critical mass hypothesis revisited: role of dynamical wave stability in spontaneous termination of cardiac fibrillation. Qu Z Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H255-63. PubMed ID: 16113075 [TBL] [Abstract][Full Text] [Related]
6. Atrial and ventricular vulnerability in a patient with the Wolff-Parkinson-White syndrome. Peters RW; Gonzalez R; Scheinman MM Pacing Clin Electrophysiol; 1981 Jan; 4(1):17-22. PubMed ID: 6171787 [TBL] [Abstract][Full Text] [Related]
7. Effects of combination of sotalol and verapamil on initiation, maintenance, and termination of ventricular fibrillation in swine hearts. Jin Q; Wu L; Dosdall DJ; Li L; Rogers JM; Ideker RE; Huang J Cardiovasc Ther; 2018 Jun; 36(3):e12326. PubMed ID: 29485248 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological mechanisms for the initiation and maintenance of ventricular fibrillation in nonischemic rabbit hearts. Watanabe Y; Toda H; Uchida H Heart Vessels Suppl; 1987; 2():69-87. PubMed ID: 3449506 [TBL] [Abstract][Full Text] [Related]
9. Comparative mechanisms of antiarrhythmic drug action in experimental atrial fibrillation. Importance of use-dependent effects on refractoriness. Wang J; Bourne GW; Wang Z; Villemaire C; Talajic M; Nattel S Circulation; 1993 Sep; 88(3):1030-44. PubMed ID: 8353865 [TBL] [Abstract][Full Text] [Related]
10. Observations from intraatrial recordings on the termination of electrically induced atrial fibrillation in humans. Sih HJ; Ropella KM; Swiryn S; Gerstenfeld EP; Sahakian AV Pacing Clin Electrophysiol; 1994 Jul; 17(7):1231-42. PubMed ID: 7937229 [TBL] [Abstract][Full Text] [Related]
11. Importance of retrograde atrial activation in atrial fibrillation genesis in the initiation of atrial fibrillation in Wolff-Parkinson-White syndrome. Comparison of atrial electrophysiologic parameters between patients with different atrial fibrillation genesis (initiation sites) in atria. Niwano S; Yamaura M; Kitano Y; Moriguchi M; Yoshizawa N; Aizawa Y; Izumi T Jpn Heart J; 1999 May; 40(3):281-93. PubMed ID: 10506851 [TBL] [Abstract][Full Text] [Related]
12. Multiple accessory pathways in the Wolff-Parkinson-White syndrome as a risk factor for ventricular fibrillation. Teo WS; Klein GJ; Guiraudon GM; Yee R; Leitch JW; McLellan D; Leather RA; Kim YH Am J Cardiol; 1991 Apr; 67(9):889-91. PubMed ID: 2011990 [No Abstract] [Full Text] [Related]
13. Comparison of the ventricular response during atrial fibrillation in patients with enhanced atrioventricular node conduction and Wolff-Parkinson-White syndrome. Milstein S; Klein GJ; Rattes MF; Sharma AD; Yee R J Am Coll Cardiol; 1987 Dec; 10(6):1244-8. PubMed ID: 3680792 [TBL] [Abstract][Full Text] [Related]
14. Supernormal conduction in the anomalous bundles of the Wolff-Parkinson-White syndrome: an overlooked electrophysiologic property with potential clinical implications. Chiale PA; Albino E; Garro HA; Selva H; Levi RJ; Sánchez RA; Elizari MV; Alvarez CB J Cardiovasc Pharmacol Ther; 2007 Sep; 12(3):181-91. PubMed ID: 17875945 [TBL] [Abstract][Full Text] [Related]
15. Enhanced dispersion of atrial refractoriness as an electrophysiological substrate for vulnerability to atrial fibrillation in patients with paroxysmal atrial fibrillation. Oliveira MM; da Silva N; Timóteo AT; Feliciano J; de Sousa L; Santos S; Marques F; Ferreira R Rev Port Cardiol; 2007; 26(7-8):691-702. PubMed ID: 17939579 [TBL] [Abstract][Full Text] [Related]
16. Predicting initiation and termination of atrial fibrillation from the ECG. Hayn D; Kollmann A; Schreier G Biomed Tech (Berl); 2007 Feb; 52(1):5-10. PubMed ID: 17313327 [TBL] [Abstract][Full Text] [Related]
17. Atrial fibrillation and recurrent ventricular fibrillation during hypokalemia in Brugada syndrome. Notarstefano P; Pratola C; Toselli T; Ferrari R Pacing Clin Electrophysiol; 2005 Dec; 28(12):1350-3. PubMed ID: 16403168 [TBL] [Abstract][Full Text] [Related]
18. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Gray RA; Pertsov AM; Jalife J Circulation; 1996 Nov; 94(10):2649-61. PubMed ID: 8921813 [TBL] [Abstract][Full Text] [Related]
19. Effects of refractory gradients and ablation on fibrillatory activity. Ciaccio EJ; Peters NS; Garan H Comput Biol Med; 2018 Apr; 95():175-187. PubMed ID: 29501736 [TBL] [Abstract][Full Text] [Related]
20. Dynamic electrophysiological behavior of human atria during paroxysmal atrial fibrillation. Capucci A; Biffi M; Boriani G; Ravelli F; Nollo G; Sabbatani P; Orsi C; Magnani B Circulation; 1995 Sep; 92(5):1193-202. PubMed ID: 7648665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]