These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8719312)

  • 1. Timing of the thermographic assessment of burns.
    Liddington MI; Shakespeare PG
    Burns; 1996 Feb; 22(1):26-8. PubMed ID: 8719312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermographic assessment of burns using a nonpermeable membrane as wound covering.
    Cole RP; Shakespeare PG; Chissell HG; Jones SG
    Burns; 1991 Apr; 17(2):117-22. PubMed ID: 2054068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermographic assessment of hand burns.
    Cole RP; Jones SG; Shakespeare PG
    Burns; 1990 Feb; 16(1):60-3. PubMed ID: 2322397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Assessment of Burn Depth with Far Infrared Time-Lapse Thermography.
    Simmons JD; Kahn SA; Vickers AL; Crockett ES; Whitehead JD; Krecker AK; Lee YL; Miller AN; Patterson SB; Richards WO; Wagner WW
    J Am Coll Surg; 2018 Apr; 226(4):687-693. PubMed ID: 29409904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive determination of burn depth in children by digital infrared thermal imaging.
    Medina-Preciado JD; Kolosovas-Machuca ES; Velez-Gomez E; Miranda-Altamirano A; González FJ
    J Biomed Opt; 2013 Jun; 18(6):061204. PubMed ID: 23111601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model.
    Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA
    Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Thermal Imaging Has the Potential to Reduce Unnecessary Surgery and Delays to Necessary Surgery in Burn Patients.
    Singer AJ; Relan P; Beto L; Jones-Koliski L; Sandoval S; Clark RA
    J Burn Care Res; 2016; 37(6):350-355. PubMed ID: 26720102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of non-invasive imaging modalities: Infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns.
    Burke-Smith A; Collier J; Jones I
    Burns; 2015 Dec; 41(8):1695-1707. PubMed ID: 26421694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis.
    Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW
    J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot evaluation study of high resolution digital thermal imaging in the assessment of burn depth.
    Hardwicke J; Thomson R; Bamford A; Moiemen N
    Burns; 2013 Feb; 39(1):76-81. PubMed ID: 22652476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of FLIR ONE Smartphone Thermography in Burn Wound Assessment.
    Xue EY; Chandler LK; Viviano SL; Keith JD
    Ann Plast Surg; 2018 Apr; 80(4 Suppl 4):S236-S238. PubMed ID: 29489530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [THERMOMETRY APPLICATION FOR ESTIMATION OF THE SKIN BURNS DEPTH].
    Kovalenko AO
    Klin Khir; 2015 Apr; (4):66-8. PubMed ID: 26263650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pilot study of a hand-held camera in a busy burn centre: Prediction of patient length of recuperation with wound temperature.
    Mazurek MJ; Frew Q; Sadeghi AM; Tan A; Syed M; Dziewulski P
    Burns; 2016 May; 42(3):614-9. PubMed ID: 26654291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of thermography for measuring burn wound healing potential.
    Carrière ME; de Haas LEM; Pijpe A; Meij-de Vries A; Gardien KLM; van Zuijlen PPM; Jaspers MEH
    Wound Repair Regen; 2020 May; 28(3):347-354. PubMed ID: 31777128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of thermal imaging in determining the depth of pediatric acute burns.
    Ganon S; Guédon A; Cassier S; Atlan M
    Burns; 2020 Aug; 46(5):1091-1099. PubMed ID: 31864785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the use of thermography to assess burn wound healing potential: a reliable and valid technique when compared to laser Doppler imaging.
    Jaspers ME; Maltha I; Klaessens JH; de Vet HC; Verdaasdonk RM; van Zuijlen PP
    J Biomed Opt; 2016 Sep; 21(9):96006. PubMed ID: 27623232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermographic assessment of burns and frostbite.
    LAWSON RN; WLODEK GD; WEBSTER DR
    Can Med Assoc J; 1961 May; 84(20):1129-31. PubMed ID: 13759724
    [No Abstract]   [Full Text] [Related]  

  • 18. Infrared Thermal Imaging as a Method of Improving Skin Graft Qualification Procedure and Skin Graft Survivability.
    Klama-Baryła A; Kitala D; Łabuś W; Kraut M; Szapski M; Smętek W
    Transplant Proc; 2020 Sep; 52(7):2223-2230. PubMed ID: 32359830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared thermography: experience from a decade of pediatric imaging.
    Saxena AK; Willital GH
    Eur J Pediatr; 2008 Jul; 167(7):757-64. PubMed ID: 17762940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of evaporative surface cooling on thermographic assessment of burn depth.
    Anselmo VJ; Zawacki BE
    Radiology; 1977 May; 123(2):331-2. PubMed ID: 847196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.