These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8720147)

  • 1. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).
    Michigami Y; Abe K; Obata H; Arai S
    J Biochem; 1995 Dec; 118(6):1279-84. PubMed ID: 8720147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ice nucleation active gene of Erwinia ananas. Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity.
    Abe K; Watabe S; Emori Y; Watanabe M; Arai S
    FEBS Lett; 1989 Dec; 258(2):297-300. PubMed ID: 2599095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of an ice nucleation active gene of Erwinia uredovora.
    Michigami Y; Watabe S; Abe K; Obata H; Arai S
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):762-4. PubMed ID: 7764866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of hydroxylamine-induced mutations in the Erwinia herbicola ice nucleation gene that selectively reduce warm temperature ice nucleation activity.
    Gurian-Sherman D; Lindow SE; Panopoulos NJ
    Mol Microbiol; 1993 Jul; 9(2):383-91. PubMed ID: 8412688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes.
    Kozloff LM; Turner MA; Arellano F
    J Bacteriol; 1991 Oct; 173(20):6528-36. PubMed ID: 1917877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual pattern of bacterial ice nucleation gene evolution.
    Edwards AR; Van den Bussche RA; Wichman HA; Orser CS
    Mol Biol Evol; 1994 Nov; 11(6):911-20. PubMed ID: 7815929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of a homophilic binding site in the neural cell adhesion molecule.
    Rao Y; Wu XF; Yip P; Gariepy J; Siu CH
    J Biol Chem; 1993 Sep; 268(27):20630-8. PubMed ID: 8376414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Components of ice nucleation structures of bacteria.
    Turner MA; Arellano F; Kozloff LM
    J Bacteriol; 1991 Oct; 173(20):6515-27. PubMed ID: 1917876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Leu-3 residue of Serratia marcescens metalloprotease inhibitor is important in inhibitory activity and binding with Serratia marcescens metalloprotease.
    Bae KH; Kim IC; Kim KS; Shin YC; Byun SM
    Arch Biochem Biophys; 1998 Apr; 352(1):37-43. PubMed ID: 9521810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus.
    Benton BM; Zang JH; Thorner J
    J Cell Biol; 1994 Nov; 127(3):623-39. PubMed ID: 7525596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale production and purification of an Erwinia ananas ice nucleation protein and evaluation of its ice nucleation activity.
    Watabe S; Abe K; Hirata A; Emori Y; Watanabe M; Arai S
    Biosci Biotechnol Biochem; 1993 Apr; 57(4):603-6. PubMed ID: 7763657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the C-terminal secretion signal of the Rhizobium leguminosarum nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion.
    Sutton JM; Peart J; Dean G; Downie JA
    Mol Plant Microbe Interact; 1996 Nov; 9(8):671-80. PubMed ID: 8870266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop.
    Castagnoli L; Vetriani C; Cesareni G
    J Mol Biol; 1994 Apr; 237(4):378-87. PubMed ID: 8151699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase A2 engineering. Deletion of the C-terminus segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface.
    Huang B; Yu BZ; Rogers J; Byeon IJ; Sekar K; Chen X; Sundaralingam M; Tsai MD; Jain MK
    Biochemistry; 1996 Sep; 35(37):12164-74. PubMed ID: 8810924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
    Suzuki S; Fukuda S; Fukushi Y; Arakawa K
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2090-2097. PubMed ID: 28942726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae.
    Warren G; Corotto L
    Gene; 1989 Dec; 85(1):239-42. PubMed ID: 2515997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB).
    Atkinson MR; Ninfa AJ
    J Bacteriol; 1993 Nov; 175(21):7016-23. PubMed ID: 7901195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of multiple basic amino acids in the C-terminal region of yeast ribosomal protein L1 to 5 S rRNA binding and 60 S ribosome stability.
    Yeh LC; Lee JC
    J Mol Biol; 1995 Feb; 246(2):295-307. PubMed ID: 7869381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase.
    Yang B; Gathy KN; Coleman MS
    J Biol Chem; 1994 Apr; 269(16):11859-68. PubMed ID: 8163485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.