These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 872062)

  • 21. Treatment of mouse mammary tumors using combined hyperthermia and ischemia.
    Baker GM; Wright EA
    Cancer Res; 1983 Jul; 43(7):3392-7. PubMed ID: 6850644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperthermia as a treatment for neoplasia.
    Dreznik A; Falk RE; Howard V; Makowka L; Venturi D
    Can J Surg; 1982 Nov; 25(6):603-8. PubMed ID: 6754046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydralazine-induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo.
    Horsman MR; Christensen KL; Overgaard J
    Int J Hyperthermia; 1989; 5(2):123-36. PubMed ID: 2926180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The metabolism of the glioblastoma: pathobiological correlates.
    Kirsch WM; Tucker WS; Tabuchi K; Fink LM; Van Buskirk JJ; Low M
    Clin Neurosurg; 1978; 25():310-25. PubMed ID: 213224
    [No Abstract]   [Full Text] [Related]  

  • 25. Tumor eradication and cell survival after localized hyperthermia induced by ultrasound.
    Marmor JB; Hilerio FJ; Hahn GM
    Cancer Res; 1979 Jun; 39(6 Pt 1):2166-71. PubMed ID: 445414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5-Thio-D-glucose selectively potentiates hyperthermic killing of hypoxic tumor cells.
    Kim JH; Kim SH; Hahn EW; Song CW
    Science; 1978 Apr; 200(4338):206-7. PubMed ID: 635582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Kinetics of tumor cell populations].
    Akimov AA; Kozlov AP; Moskalik KG
    Vopr Onkol; 1979; 25(8):98-106. PubMed ID: 384668
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of hyperthermia on hypoxic cell fraction in tumor.
    Song CW; Rhee JG; Levitt SH
    Int J Radiat Oncol Biol Phys; 1982 May; 8(5):851-6. PubMed ID: 7107420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperthermic potentiation: biological aspects and applications to radiation therapy.
    Leith JT; Miller RC; Gerner EW; Boone ML
    Cancer; 1977 Feb; 39(2 Suppl):766-79. PubMed ID: 319897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of the degree of hypothermia on the intensity of DNA, RNA and protein synthesis in a tumor and in normal tissue].
    Diuskaliev ZhD; Karakulov RK
    Vopr Onkol; 1975; 21(3):60-5. PubMed ID: 1130021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of intratumor temperature uniformity in the study of radiosensitizing effects of hyperthermia in vivo.
    Gibbs FA; Peck JW; Dethlefsen LA
    Radiat Res; 1981 Jul; 87(1):187-97. PubMed ID: 7255671
    [No Abstract]   [Full Text] [Related]  

  • 32. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo.
    Overgaard J
    Int J Radiat Oncol Biol Phys; 1980 Nov; 6(11):1507-17. PubMed ID: 7462053
    [No Abstract]   [Full Text] [Related]  

  • 33. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The potential of localized heating as a adjunct to radiation therapy.
    Gerner EW; Connor WG; Boone ML; Doss JD; Mayer EG; Miller RC
    Radiology; 1975 Aug; 116(02):433-9. PubMed ID: 1098102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The synthesis of DNA, RNA, and nuclear protein in normal and tumor strain cells. IV. HeLa tumor strain cells.
    Seed J
    J Cell Biol; 1966 Feb; 28(2):263-75. PubMed ID: 5914693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspects of biochemical effects by hyperthermia.
    Streffer C
    Natl Cancer Inst Monogr; 1982 Jun; 61():11-7. PubMed ID: 7177174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of crystalline ricin on the biosynthesis of protein, RNA, and DNA in experimental tumor cells.
    Lin JY; Liu K; Chen CC; Tung TC
    Cancer Res; 1971 Jul; 31(7):921-4. PubMed ID: 4327085
    [No Abstract]   [Full Text] [Related]  

  • 38. Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy.
    Chen WH; Luo GF; Lei Q; Hong S; Qiu WX; Liu LH; Cheng SX; Zhang XZ
    ACS Nano; 2017 Feb; 11(2):1419-1431. PubMed ID: 28107631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperthermia-induced cell death, thermotolerance, and heat shock proteins in normal, respiration-deficient, and glycolysis-deficient Chinese hamster cells.
    Landry J; Samson S; Chrétien P
    Cancer Res; 1986 Jan; 46(1):324-7. PubMed ID: 3940198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Thoughts to the problem of additional treatment to radiotherapeutic measures (author's transl)].
    Fürst G
    Radiobiol Radiother (Berl); 1978 Oct; 19(5):550-69. PubMed ID: 368876
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.