These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8720686)

  • 1. Properties of intracellular calcium stores and their role in receptor-mediated catecholamine secretion in rat adrenal chromaffin cells.
    Warashina A; Fujiwara N
    Biol Signals; 1995; 4(4):195-205. PubMed ID: 8720686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation by indomethacin of receptor-mediated catecholamine secretion in rat adrenal medulla.
    Warashina A
    Jpn J Pharmacol; 1997 Mar; 73(3):197-205. PubMed ID: 9127814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of low pH-induced catecholamine secretion in the rat adrenal medulla.
    Fujiwara N; Warashina A; Shimoji K
    J Neurochem; 1994 May; 62(5):1809-15. PubMed ID: 8158131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of Ca2+ entry and inositol trisphosphate-induced internal Ca2+ mobilization in muscarinic receptor-mediated catecholamine release in dog adrenal chromaffin cells.
    Ohtsuki H; Morita K; Minami N; Suemitsu T; Tsujimoto A; Dohi T
    Neurochem Int; 1992 Sep; 21(2):259-67. PubMed ID: 1363867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exocytosis coupled to mobilization of intracellular calcium by muscarine and caffeine in rat chromaffin cells.
    Guo X; Przywara DA; Wakade TD; Wakade AR
    J Neurochem; 1996 Jul; 67(1):155-62. PubMed ID: 8666986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous Ca2+ stores in rat adrenal chromaffin cells.
    Inoue M; Sakamoto Y; Fujishiro N; Imanaga I; Ozaki S; Prestwich GD; Warashina A
    Cell Calcium; 2003 Jan; 33(1):19-26. PubMed ID: 12526884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulations of early and late secretory processes by activation of protein kinases in the rat adrenal medulla.
    Warashina A
    Biol Signals Recept; 1998; 7(6):307-20. PubMed ID: 9873152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store.
    Malgaroli A; Fesce R; Meldolesi J
    J Biol Chem; 1990 Feb; 265(6):3005-8. PubMed ID: 2105938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M; Clark CL; Powis DA
    Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of real-time catecholamine release and cytosolic Ca2+ at single bovine chromaffin cells.
    Finnegan JM; Wightman RM
    J Biol Chem; 1995 Mar; 270(10):5353-9. PubMed ID: 7890648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine inhibits caffeine-evoked Ca2+ mobilization and catecholamine secretion from cultured bovine adrenal chromaffin cells.
    Teraoka H; Nakazato Y; Ohga A
    J Neurochem; 1991 Dec; 57(6):1884-90. PubMed ID: 1940904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantal Ca2+ release from caffeine-sensitive stores in adrenal chromaffin cells.
    Cheek TR; Moreton RB; Berridge MJ; Stauderman KA; Murawsky MM; Bootman MD
    J Biol Chem; 1993 Dec; 268(36):27076-83. PubMed ID: 8262945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of cytosolic Ca2+ elevation induced by muscarinic receptor activation in single adrenal chromaffin cells of the guinea pig.
    Ohta T; Asano T; Ito S; Kitamura N; Nakazato Y
    Cell Calcium; 1996 Sep; 20(3):303-14. PubMed ID: 8894277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells.
    Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused rat adrenal medulla.
    Harish OE; Kao LS; Raffaniello R; Wakade AR; Schneider AS
    J Neurochem; 1987 Jun; 48(6):1730-5. PubMed ID: 2883256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2+ through breakdown of phosphoinositides to induce catecholamine secretion. Role of IP3 in exocytosis.
    Malhotra RK; Wakade TD; Wakade AR
    J Biol Chem; 1988 Feb; 263(5):2123-6. PubMed ID: 3123488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells.
    Wu PC; Fann MJ; Kao LS
    J Neurochem; 2010 Mar; 112(5):1210-22. PubMed ID: 20002295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-dependent K(+) current and exocytosis in responses to caffeine and muscarine in voltage-clamped guinea-pig adrenal chromaffin cells.
    Ohta T; Wakade AR; Nakazato Y; Ito S
    J Neurochem; 2001 Sep; 78(6):1243-55. PubMed ID: 11579133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of secretion of catecholamines from the rat adrenal medulla during continuous exposure to nicotine, muscarine or excess K.
    Malhotra RK; Wakade TD; Wakade AR
    Neuroscience; 1988 Jul; 26(1):313-20. PubMed ID: 3419589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of protein kinase C activation on catecholamine secretions evoked by stimulations of various receptors in the rat adrenal medulla.
    Warashina A; Fujiwara N
    Neurosci Lett; 1991 Aug; 129(2):181-4. PubMed ID: 1660576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.