These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 8721153)
21. The spinothalamic tract in the primate: a re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Mantyh PW Neuroscience; 1983 Aug; 9(4):847-62. PubMed ID: 6688662 [TBL] [Abstract][Full Text] [Related]
22. Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. Helfert RH; Juiz JM; Bledsoe SC; Bonneau JM; Wenthold RJ; Altschuler RA J Comp Neurol; 1992 Sep; 323(3):305-25. PubMed ID: 1360986 [TBL] [Abstract][Full Text] [Related]
23. Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide. Merighi A; Polak JM; Theodosis DT Neuroscience; 1991; 40(1):67-80. PubMed ID: 1711177 [TBL] [Abstract][Full Text] [Related]
25. Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Hackney CM; Osen KK; Ottersen OP; Storm-Mathisen J; Manjaly G Eur J Neurosci; 1996 Jan; 8(1):79-91. PubMed ID: 8713452 [TBL] [Abstract][Full Text] [Related]
26. Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. De Biasi S; Vitellaro-Zuccarello L; Bernardi P; Valtschanoff JG; Weinberg RJ J Comp Neurol; 1994 Sep; 347(2):275-87. PubMed ID: 7814668 [TBL] [Abstract][Full Text] [Related]
27. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. De Biasi S; Rustioni A Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7820-4. PubMed ID: 2459717 [TBL] [Abstract][Full Text] [Related]
28. Vesicle shape and amino acids in synaptic inputs to phrenic motoneurons: do all inputs contain either glutamate or GABA? Murphy SM; Pilowsky PM; Llewellyn-Smith IJ J Comp Neurol; 1996 Sep; 373(2):200-19. PubMed ID: 8889922 [TBL] [Abstract][Full Text] [Related]
29. Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: a quantitative immunocytochemical analysis in guinea pig. Osen KK; Storm-Mathisen J; Ottersen OP; Dihle B J Comp Neurol; 1995 Jul; 357(3):482-500. PubMed ID: 7673480 [TBL] [Abstract][Full Text] [Related]
30. Postembedding immunocytochemistry demonstrates directly that both retinal and cortical terminals in the cat superior colliculus are glutamate immunoreactive. Mize RR; Butler GD J Comp Neurol; 1996 Aug; 371(4):633-48. PubMed ID: 8841915 [TBL] [Abstract][Full Text] [Related]
31. Glutamate immunoreactivity in the rat basilar pons: light and electron microscopy reveals labeled boutons and cells of origin of afferent projections. Border BG; Mihailoff GA Neuroscience; 1991; 45(1):47-61. PubMed ID: 1721694 [TBL] [Abstract][Full Text] [Related]
32. Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. Valtschanoff JG; Phend KD; Bernardi PS; Weinberg RJ; Rustioni A J Comp Neurol; 1994 Aug; 346(2):237-52. PubMed ID: 7525664 [TBL] [Abstract][Full Text] [Related]
33. Synaptic relationship of the neurons containing a metabotropic glutamate receptor, MGluR5, with nociceptive primary afferent and GABAergic terminals in rat spinal superficial laminae. Tao YX; Li YQ; Zhao ZQ; Johns RA Brain Res; 2000 Sep; 875(1-2):138-43. PubMed ID: 10967307 [TBL] [Abstract][Full Text] [Related]
34. GABAergic projection from the intercalated cell masses of the amygdala to the basal forebrain in cats. Paré D; Smith Y J Comp Neurol; 1994 Jun; 344(1):33-49. PubMed ID: 7520456 [TBL] [Abstract][Full Text] [Related]
35. Serotonergic innervation of the lateral cervical nucleus: an immunohistochemical study in cats and monkeys (Aotus trivirgatus). Broman J; Blomqvist A Synapse; 1990; 6(1):55-62. PubMed ID: 2399490 [TBL] [Abstract][Full Text] [Related]
36. Immunocytochemistry of enkephalin and serotonin distribution in restricted zones of the rostral trigeminal spinal subnuclei: comparisons with subnucleus caudalis. Matthews MA; Hernandez TV; Liles SL Synapse; 1987; 1(6):512-29. PubMed ID: 3455561 [TBL] [Abstract][Full Text] [Related]
37. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. Kenigfest NB; Repérant J; Rio JP; Belekhova MG; Ward R; Vesselkin NP; Miceli D; Herbin M J Comp Neurol; 1998 Feb; 391(4):470-90. PubMed ID: 9486826 [TBL] [Abstract][Full Text] [Related]
38. Synaptology of trigemino- and spinothalamic lamina I terminations in the posterior ventral medial nucleus of the macaque. Beggs J; Jordan S; Ericson AC; Blomqvist A; Craig AD J Comp Neurol; 2003 May; 459(4):334-54. PubMed ID: 12687703 [TBL] [Abstract][Full Text] [Related]
39. An electron microscopic description of glutamate-like immunoreactive axon terminals in the rat principal sensory and spinal trigeminal nuclei. Clements JR; Beitz AJ J Comp Neurol; 1991 Jul; 309(2):271-80. PubMed ID: 1679441 [TBL] [Abstract][Full Text] [Related]
40. Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. Gingold SI; Greenspan JD; Apkarian AV J Comp Neurol; 1991 Jun; 308(3):467-90. PubMed ID: 1865012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]