BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 8721165)

  • 1. Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits.
    Macefield VG; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):172-84. PubMed ID: 8721165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits.
    Macefield VG; Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):155-71. PubMed ID: 8721164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia.
    Johansson RS; Hger C; Bäckström L
    Exp Brain Res; 1992; 89(1):204-13. PubMed ID: 1601098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads.
    Cole KJ; Johansson RS
    Exp Brain Res; 1993; 95(3):523-32. PubMed ID: 8224079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondigital afferent input in reactive control of fingertip forces during precision grip.
    Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):131-41. PubMed ID: 8817264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent control of human finger-tip forces at individual digits during precision lifting.
    Edin BB; Westling G; Johansson RS
    J Physiol; 1992 May; 450():547-64. PubMed ID: 1432717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loads applied tangential to a fingertip during an object restraint task can trigger short-latency as well as long-latency EMG responses in hand muscles.
    Macefield VG; Johansson RS
    Exp Brain Res; 2003 Sep; 152(2):143-9. PubMed ID: 12898103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables.
    Häger-Ross C; Cole KJ; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):142-50. PubMed ID: 8817265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of fingertip forces during human manipulation can emerge from independent neural networks controlling each engaged digit.
    Burstedt MK; Edin BB; Johansson RS
    Exp Brain Res; 1997 Oct; 117(1):67-79. PubMed ID: 9386005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thumb and finger forces produced by motor units in the long flexor of the human thumb.
    Yu WS; Kilbreath SL; Fitzpatrick RC; Gandevia SC
    J Physiol; 2007 Sep; 583(Pt 3):1145-54. PubMed ID: 17656436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of fingertip forces in multidigit manipulation.
    Flanagan JR; Burstedt MK; Johansson RS
    J Neurophysiol; 1999 Apr; 81(4):1706-17. PubMed ID: 10200206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip.
    Johansson RS; Lemon RN; Westling G
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility?
    Nowak DA; Hermsdörfer J; Marquardt C; Topka H
    Clin Neurophysiol; 2003 Mar; 114(3):472-87. PubMed ID: 12705428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1987; 66(1):141-54. PubMed ID: 3582528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude.
    Johansson RS; Riso R; Häger C; Bäckström L
    Exp Brain Res; 1992; 89(1):181-91. PubMed ID: 1601096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object.
    Nowak DA; Hermsdörfer J; Glasauer S; Philipp J; Meyer L; Mai N
    Eur J Neurosci; 2001 Aug; 14(4):756-62. PubMed ID: 11556900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic and electromyographic responses to perturbation of a rapid grasp.
    Cole KJ; Abbs JH
    J Neurophysiol; 1987 May; 57(5):1498-510. PubMed ID: 3585477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation.
    Birznieks I; Burstedt MK; Edin BB; Johansson RS
    J Neurophysiol; 1998 Oct; 80(4):1989-2002. PubMed ID: 9772255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digit force adjustments during finger addition/removal in multi-digit prehension.
    Budgeon MK; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2008 Aug; 189(3):345-59. PubMed ID: 18553076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):845-57. PubMed ID: 10036285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.