These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8721216)

  • 1. Evidence of surface diffusion of water molecules on proteins of rabbit lens by 1H NMR relaxation measurements.
    Bodurka J; Buntkowsky G; Gutsze A; Limbach HH
    Z Naturforsch C J Biosci; 1996; 51(1-2):81-90. PubMed ID: 8721216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR and calorimetric measurements on rabbit eye lenses.
    Gutsze A; Bodurka J; Olechnowicz R; Buntkowsky G; Limbach HH
    Z Naturforsch C J Biosci; 1995; 50(5-6):410-8. PubMed ID: 7546034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
    Caines GH; Schleich T; Morgan CF; Farnsworth PN
    Biochemistry; 1990 Aug; 29(33):7547-57. PubMed ID: 2271517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.
    Szuminska K; Gutsze A; Kowalczyk A
    Z Naturforsch C J Biosci; 2001; 56(11-12):1075-81. PubMed ID: 11837660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of spin-lattice and spin-spin relaxation times of 1H, 2H, and 17O in muscular water.
    Fung BM; McGaughy TW
    Biophys J; 1979 Nov; 28(2):293-303. PubMed ID: 233613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
    Koenig SH; Hallenga K; Shporer M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2667-71. PubMed ID: 1058481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.
    Kimmich R; Fatkullin N
    Prog Nucl Magn Reson Spectrosc; 2017 Aug; 101():18-50. PubMed ID: 28844220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements.
    Steinhoff HJ; Kramm B; Hess G; Owerdieck C; Redhardt A
    Biophys J; 1993 Oct; 65(4):1486-95. PubMed ID: 8274642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme-values statistics and dynamics of water at protein interfaces.
    Korb JP; Goddard Y; Pajski J; Diakova G; Bryant RG
    J Phys Chem B; 2011 Nov; 115(44):12845-58. PubMed ID: 21932852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age.
    Bottomley PA; Foster TH; Argersinger RE; Pfeifer LM
    Med Phys; 1984; 11(4):425-48. PubMed ID: 6482839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses.
    Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T
    Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR relaxation investigation of water mobility in aqueous bovine serum albumin solutions.
    Grösch L; Noack F
    Biochim Biophys Acta; 1976 Nov; 453(1):218-32. PubMed ID: 999881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance study of free and bound water fractions in normal lenses.
    Stankeiwicz PJ; Metz KR; Sassani JW; Briggs RW
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2361-9. PubMed ID: 2807793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water translational motion at the bilayer interface: an NMR relaxation dispersion measurement.
    Hodges MW; Cafiso DS; Polnaszek CF; Lester CC; Bryant RG
    Biophys J; 1997 Nov; 73(5):2575-9. PubMed ID: 9370451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water molecule contributions to proton spin-lattice relaxation in rotationally immobilized proteins.
    Goddard YA; Korb JP; Bryant RG
    J Magn Reson; 2009 Jul; 199(1):68-74. PubMed ID: 19394883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diffusion properties of water in the human crystalline lens during cataract development].
    Babizhaev MA; Nikolaev GM; Goriachev SI; Dautova NR
    Biofizika; 1991; 36(2):327-9. PubMed ID: 1892908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion.
    Denisov VP; Halle B
    J Mol Biol; 1995 Feb; 245(5):682-97. PubMed ID: 7531248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton nuclear magnetic resonance measurement of diffusional water permeability in suspended renal proximal tubules.
    Verkman AS; Wong KR
    Biophys J; 1987 May; 51(5):717-23. PubMed ID: 3593869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear Magnetic Resonance characterization of traditional homeopathically manufactured copper (Cuprum metallicum) and plant (Gelsemium sempervirens) medicines and controls.
    Van Wassenhoven M; Goyens M; Henry M; Capieaux E; Devos P
    Homeopathy; 2017 Nov; 106(4):223-239. PubMed ID: 29157472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.