These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8721441)

  • 41. The effects of halothane and isoflurane on cerebrocortical microcirculation and autoregulation as assessed by laser-Doppler flowmetry.
    Lee JG; Hudetz AG; Smith JJ; Hillard CJ; Bosnjak ZJ; Kampine JP
    Anesth Analg; 1994 Jul; 79(1):58-65. PubMed ID: 8010455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation.
    Muench E; Bauhuf C; Roth H; Horn P; Phillips M; Marquetant N; Quintel M; Vajkoczy P
    Crit Care Med; 2005 Oct; 33(10):2367-72. PubMed ID: 16215394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal variations in testicular microcirculation.
    Bergh A; Lissbrant E; Collin O
    J Androl; 1999; 20(6):724-30. PubMed ID: 10591611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs.
    Borel CO; Backofen JE; Koehler RC; Jones MD; Traystman RJ
    Am J Physiol; 1987 Dec; 253(6 Pt 2):H1342-8. PubMed ID: 3122588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of arterial carbon dioxide on cerebral oxygenation and haemodynamics during ECMO in normoxaemic and hypoxaemic piglets.
    Liem KD; Kollée LA; Hopman JC; De Haan AF; Oeseburg B
    Acta Anaesthesiol Scand Suppl; 1995; 107():157-64. PubMed ID: 8599270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhythmic activity of cat pial vessels in vivo.
    Auer LM; Gallhofer B
    Eur Neurol; 1981; 20(6):448-68. PubMed ID: 6118276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rheographic assessment of cerebral blood volume and correlations with changes in intracranial pressure.
    Benabid AL; Persat JC; Piquard JF; Barge M; Chirossel JP
    Acta Neurochir (Wien); 1976; 34(1-4):287-94. PubMed ID: 961487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical cerebral blood flow cycling: anesthesia and arterial blood pressure.
    Jones SC; Williams JL; Shea M; Easley KA; Wei D
    Am J Physiol; 1995 Feb; 268(2 Pt 2):H569-75. PubMed ID: 7864181
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wavelet phase coherence analysis of the skin blood flow oscillations in human.
    Tankanag AV; Grinevich AA; Kirilina TV; Krasnikov GV; Piskunova GM; Chemeris NK
    Microvasc Res; 2014 Sep; 95():53-9. PubMed ID: 25026413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide synthesis inhibition during cerebral hypoxemia and reoxygenation with 100% oxygen in newborn pigs.
    Kutzsche S; Solas AB; Lyberg T; Saugstad OD
    Biol Neonate; 2002; 82(3):197-206. PubMed ID: 12373071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebral blood flow of the exposed brain surface measured by laser Doppler perfusion imaging.
    Kimme P; Gustafsson U; Sollevi A; Nilsson G; Sjöberg F
    Acta Physiol Scand; 1997 Jan; 159(1):15-22. PubMed ID: 9124066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebral haemodynamics in patients with glutaryl-coenzyme A dehydrogenase deficiency.
    Strauss KA; Donnelly P; Wintermark M
    Brain; 2010 Jan; 133(Pt 1):76-92. PubMed ID: 20032085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel method for dynamic control of intracranial pressure.
    Luciano MG; Dombrowski SM; Qvarlander S; El-Khoury S; Yang J; Thyagaraj S; Loth F
    J Neurosurg; 2017 May; 126(5):1629-1640. PubMed ID: 27419825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regional cerebral blood flow after a localized cerebral contusion in pigs.
    Madsen FF
    Acta Neurochir (Wien); 1990; 105(3-4):150-7. PubMed ID: 2125804
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of increased intracranial pressure on cerebral blood volume, blood flow, and oxygen utilization in monkeys.
    Grubb RL; Raichle ME; Phelps ME; Ratcheson RA
    J Neurosurg; 1975 Oct; 43(4):385-98. PubMed ID: 808593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of cerebral blood flow measured by laser-Doppler flowmetry and hydrogen clearance in cats after cerebral insult and hypervolemic hemodilution.
    Kramer MS; Vinall PE; Katolik LI; Simeone FA
    Neurosurgery; 1996 Feb; 38(2):355-61. PubMed ID: 8869064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regional blood flow in brain and peripheral tissues during acute experimental arterial subdural bleeding.
    Orlin JR; Zwetnow NN; Hall C
    Acta Neurochir (Wien); 1993; 122(3-4):257-65. PubMed ID: 8372718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.