These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8721743)
1. Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose. Suganuma T; Ohnishi M; Hiromi K; Nagahama T Carbohydr Res; 1996 Feb; 282(1):171-80. PubMed ID: 8721743 [TBL] [Abstract][Full Text] [Related]
2. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. Suganuma T; Matsuno R; Ohnishi M; Hiromi K J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947 [TBL] [Abstract][Full Text] [Related]
3. Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates. Kandra L; Gyémánt G; Remenyik J; Hovánszki G; Lipták A FEBS Lett; 2002 May; 518(1-3):79-82. PubMed ID: 11997021 [TBL] [Abstract][Full Text] [Related]
4. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. Seigner C; Prodanov E; Marchis-Mouren G Biochim Biophys Acta; 1987 Jun; 913(2):200-9. PubMed ID: 3496119 [TBL] [Abstract][Full Text] [Related]
5. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase. Tran PL; Lee JS; Park KH FEBS Lett; 2014 Feb; 588(4):620-4. PubMed ID: 24440349 [TBL] [Abstract][Full Text] [Related]
6. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile. Seigner C; Prodanov E; Marchis-Mouren G Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211 [TBL] [Abstract][Full Text] [Related]
7. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Brayer GD; Sidhu G; Maurus R; Rydberg EH; Braun C; Wang Y; Nguyen NT; Overall CM; Withers SG Biochemistry; 2000 Apr; 39(16):4778-91. PubMed ID: 10769135 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of action and the substrate-dependent pH maximum shift of the alpha-amylase of Bacillus coagulans. Keating L; Kelly C; Fogarty W Carbohydr Res; 1998 Jul; 309(4):311-8. PubMed ID: 9764468 [TBL] [Abstract][Full Text] [Related]
9. Reaction mechanism of saccharifying alpha-amylase from B. subtilis with maltose as a substrate. Fujimori H; Ohnishi M; Sakida M; Matsuno R; Hiromi K J Biochem; 1977 Aug; 82(2):417-27. PubMed ID: 410799 [No Abstract] [Full Text] [Related]
10. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates. Prodanov E; Seigner C; Marchis-Mouren G Biochem Biophys Res Commun; 1984 Jul; 122(1):75-81. PubMed ID: 6611158 [TBL] [Abstract][Full Text] [Related]
11. Multimolecular substrate reactions catalyzed by caabohydrases. Aspergillus oryzae alpha-amylase degradation of maltooligosaccharides. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2338-44. PubMed ID: 307963 [TBL] [Abstract][Full Text] [Related]
12. Allosteric behavior irrespective of conformational change of enzyme protein. Sigmoidal concentration dependence of rate of action of saccharifying alpha-amylase on maltose. Fujimori H; Ohnishi M; Sakoda M; Matsuno R; Hiromi K FEBS Lett; 1976 Dec; 72(2):283-6. PubMed ID: 16386041 [No Abstract] [Full Text] [Related]
13. Threshold in a single enzyme reaction system. Reaction of maltose catalyzed by saccharifying alpha-amylase from B. subtilis. Matsuno R; Nakanishi K; Ohnishi M; Hiromi K; Kamikubo T J Biochem; 1978 Mar; 83(3):859-62. PubMed ID: 417077 [No Abstract] [Full Text] [Related]
14. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide. Fujimori H; Ohnishi M; Hiromi K J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111 [TBL] [Abstract][Full Text] [Related]
15. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. Manas NH; Bakar FD; Illias RM J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296 [TBL] [Abstract][Full Text] [Related]
16. Substrate concentration dependence of the rate of maltose hydrolysis by saccharifying alpha-amylase from B. subtilis. Shibaoka T; Inatani T; Hiromi K; Watanabe T J Biochem; 1975 May; 77(5):965-8. PubMed ID: 808539 [TBL] [Abstract][Full Text] [Related]
17. Examination of the active sites of human salivary alpha-amylase (HSA). Kandra L; Gyémánt G Carbohydr Res; 2000 Nov; 329(3):579-85. PubMed ID: 11128586 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of the action of Taka-amylase A on maltotriose. Suganuma T; Ohnishi M; Matsuno R; Hiromi K J Biochem; 1976 Sep; 80(3):645-8. PubMed ID: 977557 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanism of transfer action of saccharifying alpha-amylase of Bacillus subtilis. Maltose--phenyl alpha-glucoside system. Yoshida H; Hiromi K; Ono S J Biochem; 1969 Aug; 66(2):183-90. PubMed ID: 4981458 [No Abstract] [Full Text] [Related]
20. Model for carbohydrase action. Aspergillus oryzae alpha-amylase degradation of maltotriose. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2345-50. PubMed ID: 307964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]