These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 8722040)
1. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Rodnina MV; Pape T; Fricke R; Wintermeyer W Biochem Cell Biol; 1995; 73(11-12):1221-7. PubMed ID: 8722040 [TBL] [Abstract][Full Text] [Related]
2. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina MV; Fricke R; Kuhn L; Wintermeyer W EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613 [TBL] [Abstract][Full Text] [Related]
3. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related]
4. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. Rodnina MV; Pape T; Fricke R; Kuhn L; Wintermeyer W J Biol Chem; 1996 Jan; 271(2):646-52. PubMed ID: 8557669 [TBL] [Abstract][Full Text] [Related]
5. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
6. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Mustafi M; Weisshaar JC mBio; 2018 Jan; 9(1):. PubMed ID: 29339430 [TBL] [Abstract][Full Text] [Related]
8. tRNA and the guanosinetriphosphatase activity of elongation factor Tu. Swart GW; Parmeggiani A Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860 [TBL] [Abstract][Full Text] [Related]
9. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. Thompson RC; Dix DB; Karim AM J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605 [TBL] [Abstract][Full Text] [Related]
10. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland A; Parmeggiani A Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899 [TBL] [Abstract][Full Text] [Related]
11. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Fislage M; Zhang J; Brown ZP; Mandava CS; Sanyal S; Ehrenberg M; Frank J Nucleic Acids Res; 2018 Jun; 46(11):5861-5874. PubMed ID: 29733411 [TBL] [Abstract][Full Text] [Related]
12. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527 [TBL] [Abstract][Full Text] [Related]
13. Stoichiometry for the elongation factor Tu.aminoacyl-tRNA complex switches with temperature. Bilgin N; Ehrenberg M Biochemistry; 1995 Jan; 34(3):715-9. PubMed ID: 7827027 [TBL] [Abstract][Full Text] [Related]
14. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
16. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape T; Wintermeyer W; Rodnina MV EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203 [TBL] [Abstract][Full Text] [Related]
17. Changes in aminoacyl transfer ribonucleic acid conformation upon association with elongation factor Tu-guanosine 5'-triphosphate. fluorescence studies of ternary complex conformation and topology. Adkins HJ; Miller DL; Johnson AE Biochemistry; 1983 Mar; 22(5):1208-17. PubMed ID: 6551178 [TBL] [Abstract][Full Text] [Related]
18. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes. Pingoud A; Gast FU; Block W; Peters F J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217 [TBL] [Abstract][Full Text] [Related]
19. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Piepenburg O; Pape T; Pleiss JA; Wintermeyer W; Uhlenbeck OC; Rodnina MV Biochemistry; 2000 Feb; 39(7):1734-8. PubMed ID: 10677222 [TBL] [Abstract][Full Text] [Related]
20. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Rodnina MV; Fricke R; Wintermeyer W Biochemistry; 1994 Oct; 33(40):12267-75. PubMed ID: 7918447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]