These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8722182)

  • 21. Control of Bacillus licheniformis spores isolated from dairy materials in yogurt production.
    Tanaka T; Ito A; Kamikado H
    Biocontrol Sci; 2012; 17(4):169-73. PubMed ID: 23269218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods.
    Lucas R; Grande MA; Abriouel H; Maqueda M; Ben Omar N; Valdivia E; Martínez-Cañamero M; Gálvez A
    Food Chem Toxicol; 2006 Oct; 44(10):1774-81. PubMed ID: 16831501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat resistance of Bacillus cereus, Salmonella typhimurium and Lactobacillus delbrueckii in relation to pH and ethanol.
    Casadei ; Ingram R; Hitchings E; Archer J; Gaze JE
    Int J Food Microbiol; 2001 Jan; 63(1-2):125-34. PubMed ID: 11205944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).
    Baril E; Coroller L; Couvert O; El Jabri M; Leguerinel I; Postollec F; Boulais C; Carlin F; Mafart P
    Food Microbiol; 2012 Oct; 32(1):79-86. PubMed ID: 22850377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Resistance and Growth of Bacillus licheniformis and Bacillus subtilis in Tomato Juice.
    Rodriguez JH; Cousin MA; Nelson PE
    J Food Prot; 1993 Feb; 56(2):165-168. PubMed ID: 31084104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of shoulders on the calculus of heat sterilization treatments with different bacterial spores.
    Ruiz V; Alonso R; Salvador M; Condón S; Condón-Abanto S
    Food Microbiol; 2021 Apr; 94():103663. PubMed ID: 33279088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive model to describe the combined effect of pH and NaCl on apparent heat resistance of Bacillus stearothermophilus.
    Periago PM; Fernández PS; Salmerón MC; Martínez A
    Int J Food Microbiol; 1998 Oct; 44(1-2):21-30. PubMed ID: 9849781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of acid adaptation conditions on heat resistance of Escherichia coli O157: H7.
    Tosun H; Gönül SA
    Pol J Microbiol; 2005; 54(4):295-9. PubMed ID: 16599300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the sporulation temperature upon the heat resistance of Bacillus subtilis.
    Condon S; Bayarte M; Sala FJ
    J Appl Bacteriol; 1992 Sep; 73(3):251-6. PubMed ID: 1399918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermobacteriological characterization of Enterobacter sakazakii.
    Arroyo C; Condón S; Pagán R
    Int J Food Microbiol; 2009 Nov; 136(1):110-8. PubMed ID: 19811846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of NaCl, NaNO2 and oxygen on the germination and growth of Bacillus licheniformis, a spoilage organism of chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1984 Dec; 57(3):523-30. PubMed ID: 6530382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical manipulation of the heat resistance of Clostridium botulinum spores.
    Alderton G; Ito KA; Chen JK
    Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of culture age, pre-incubation at low temperature and pH on the thermal resistance of Aeromonas hydrophila.
    Condón S; García ML; Otero A; Sala FJ
    J Appl Bacteriol; 1992 Apr; 72(4):322-6. PubMed ID: 1517173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical characterization of tomato juice fermented with bifidobacteria.
    Koh JH; Kim Y; Oh JH
    J Food Sci; 2010 Jun; 75(5):C428-32. PubMed ID: 20629863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat and desiccation are the predominant factors affecting inactivation of Bacillus licheniformis and Bacillus thuringiensis spores during simulated composting.
    Stanford K; Harvey A; Barbieri R; Xu S; Reuter T; Amoako KK; Selinger LB; McAllister TA
    J Appl Microbiol; 2016 Jan; 120(1):90-8. PubMed ID: 26513540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.
    Esteban MD; Conesa R; Huertas JP; Palop A
    Food Microbiol; 2015 Jun; 48():35-40. PubMed ID: 25790989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species.
    Warth AD
    J Bacteriol; 1978 Jun; 134(3):699-705. PubMed ID: 659368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the influence of pH and organic acid types on thermal inactivation of Bacillus cereus spores.
    Leguerinel I; Mafart P
    Int J Food Microbiol; 2001 Jan; 63(1-2):29-34. PubMed ID: 11205951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of moderately acidic pH on heat resistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree.
    Cameron MS; Leonard SJ; Barrett EL
    Appl Environ Microbiol; 1980 May; 39(5):943-9. PubMed ID: 7396485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal resistance characteristics of PA 3679 in the temperature range of 110-121 degrees C as affected by pH, type of acidulant and substrate.
    Ocio MJ; Sánchez T; Fernandez PS; Rodrigo M; Martínez A
    Int J Food Microbiol; 1994 Jun; 22(4):239-47. PubMed ID: 7986675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.