These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8722761)

  • 41. Overexpression of yeast homologs of the mammalian checkpoint gene RCC1 suppresses the class of alpha-tubulin mutations that arrest with excess microtubules.
    Kirkpatrick D; Solomon F
    Genetics; 1994 Jun; 137(2):381-92. PubMed ID: 8070652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae.
    Russell CS; Ben-Yehuda S; Dix I; Kupiec M; Beggs JD
    RNA; 2000 Nov; 6(11):1565-72. PubMed ID: 11105756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3' splice site selection.
    Umen JG; Guthrie C
    Genetics; 1996 Jun; 143(2):723-39. PubMed ID: 8725222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The amino-terminal domain of yeast U1-70K is necessary and sufficient for function.
    Hilleren PJ; Kao HY; Siliciano PG
    Mol Cell Biol; 1995 Nov; 15(11):6341-50. PubMed ID: 7565787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CUS1, a suppressor of cold-sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145.
    Wells SE; Neville M; Haynes M; Wang J; Igel H; Ares M
    Genes Dev; 1996 Jan; 10(2):220-32. PubMed ID: 8566755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An essential yeast snRNA with a U5-like domain is required for splicing in vivo.
    Patterson B; Guthrie C
    Cell; 1987 Jun; 49(5):613-24. PubMed ID: 3555841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability.
    Mazroui R; Puoti A; Krämer A
    RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Essential domains of the PRP21 splicing factor are implicated in the binding to PRP9 and PRP11 proteins and are conserved through evolution.
    Rain JC; Tartakoff AM; Krämer A; Legrain P
    RNA; 1996 Jun; 2(6):535-50. PubMed ID: 8718683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein.
    Minvielle-Sebastia L; Winsor B; Bonneaud N; Lacroute F
    Mol Cell Biol; 1991 Jun; 11(6):3075-87. PubMed ID: 1674817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18.
    Zhang X; Schwer B
    Nucleic Acids Res; 1997 Jun; 25(11):2146-52. PubMed ID: 9153314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1.
    Rain JC; Rafi Z; Rhani Z; Legrain P; Krämer A
    RNA; 1998 May; 4(5):551-65. PubMed ID: 9582097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates.
    Burgess SM; Guthrie C
    Cell; 1993 Jul; 73(7):1377-91. PubMed ID: 8324826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structure of the functional domain of the splicing factor Prp18.
    Jiang J; Horowitz DS; Xu RM
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3022-7. PubMed ID: 10737784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein.
    Ganster RW; Shen W; Schmidt MC
    Mol Cell Biol; 1993 Jun; 13(6):3650-9. PubMed ID: 8497275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis.
    Tirupati HK; Shaw LC; Lewin AS
    J Biol Chem; 1999 Oct; 274(43):30393-401. PubMed ID: 10521416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The budding yeast U5 snRNP Prp8 is a highly conserved protein which links RNA splicing with cell cycle progression.
    Shea JE; Toyn JH; Johnston LH
    Nucleic Acids Res; 1994 Dec; 22(25):5555-64. PubMed ID: 7838707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels.
    Blanton S; Srinivasan A; Rymond BC
    Mol Cell Biol; 1992 Sep; 12(9):3939-47. PubMed ID: 1508195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast.
    O'Keefe RT; Norman C; Newman AJ
    Cell; 1996 Aug; 86(4):679-89. PubMed ID: 8752221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors.
    Legrain P; Choulika A
    EMBO J; 1990 Sep; 9(9):2775-81. PubMed ID: 2118103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae.
    van Nues RW; Beggs JD
    Genetics; 2001 Apr; 157(4):1451-67. PubMed ID: 11290703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.