These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8723844)

  • 1. Potassium currents in cultured glia of the frog optic nerve.
    Philippi M; Vyklicky L; Orkand RK
    Glia; 1996 May; 17(1):72-82. PubMed ID: 8723844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium currents in endfeet of isolated Müller cells from the frog retina.
    Skatchkov SN; Vyklický L; Orkand RK
    Glia; 1995 Sep; 15(1):54-64. PubMed ID: 8847101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on contribution of glial inwardly-rectifying K(+) current to membrane potential and ion flux: an experimental and theoretical study.
    Wu SN; Huang YM; Kao CA; Chen BS; Lo YC
    Kaohsiung J Med Sci; 2015 Jan; 31(1):9-17. PubMed ID: 25600915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cutting the optic nerve on K+ currents in endfeet of Muller cells isolated from frog retina.
    Skatchkov SN; Vyklicky L; Clasen T; Orkand RK
    Neurosci Lett; 1996 Apr; 208(2):81-4. PubMed ID: 8859895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential inhibition of glial K(+) currents by 4-AP.
    Bordey A; Sontheimer H
    J Neurophysiol; 1999 Dec; 82(6):3476-87. PubMed ID: 10601476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.
    Bay V; Butt AM
    Glia; 2012 Apr; 60(4):651-60. PubMed ID: 22290828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris.
    Masetto S; Russo G; Prigioni I
    J Neurophysiol; 1994 Jul; 72(1):443-55. PubMed ID: 7965026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional expression of Kir 6.1/SUR1-K(ATP) channels in frog retinal Müller glial cells.
    Skatchkov SN; Rojas L; Eaton MJ; Orkand RK; Biedermann B; Bringmann A; Pannicke T; Veh RW; Reichenbach A
    Glia; 2002 May; 38(3):256-67. PubMed ID: 11968063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated sodium and potassium channels in radial glial cells of trout optic tectum studied by patch clamp analysis and single cell RT-PCR.
    Rabe H; Koschorek E; Nona SN; Ritz HJ; Jeserich G
    Glia; 1999 May; 26(3):221-32. PubMed ID: 10340763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological properties of human astrocytic tumor cells In situ: enigma of spiking glial cells.
    Bordey A; Sontheimer H
    J Neurophysiol; 1998 May; 79(5):2782-93. PubMed ID: 9582244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A function of delayed rectifier potassium channels in glial cells: maintenance of an auxiliary membrane potential under pathological conditions.
    Pannicke T; Faude F; Reichenbach A; Reichelt W
    Brain Res; 2000 Apr; 862(1-2):187-93. PubMed ID: 10799684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K(+) inward rectifier currents in reactive astrocytes from adult rat brain.
    Perillán PR; Li X; Simard JM
    Glia; 1999 Sep; 27(3):213-25. PubMed ID: 10457368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice.
    Sontheimer H; Waxman SG
    J Neurophysiol; 1993 Nov; 70(5):1863-73. PubMed ID: 7507520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite glial cells in situ within mammalian prevertebral ganglia express K+ channels active at rest potential.
    Gola M; Niel JP; Delmas P; Jacquet G
    J Membr Biol; 1993 Oct; 136(1):75-84. PubMed ID: 8271274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices.
    Kressin K; Kuprijanova E; Jabs R; Seifert G; Steinhäuser C
    Glia; 1995 Oct; 15(2):173-87. PubMed ID: 8567069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes.
    Ransom CB; Sontheimer H
    J Neurophysiol; 1995 Jan; 73(1):333-46. PubMed ID: 7714576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3.
    Klee R; Ficker E; Heinemann U
    J Neurophysiol; 1995 Nov; 74(5):1982-95. PubMed ID: 8592191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D; Gabriel S; Heinemann U
    Brain Res; 2007 Oct; 1173():14-26. PubMed ID: 17850772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.