These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8724996)

  • 1. Lipoprotein that selectively inhibits taste nerve responses to bitter substances.
    Katsuragi Y; Yasumasu T; Kurihara K
    Brain Res; 1996 Mar; 713(1-2):240-5. PubMed ID: 8724996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective inhibition of bitter taste of various drugs by lipoprotein.
    Katsuragi Y; Sugiura Y; Lee C; Otsuji K; Kurihara K
    Pharm Res; 1995 May; 12(5):658-62. PubMed ID: 7479549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific inhibitor for bitter taste: inhibition of frog taste nerve responses and human taste sensation to bitter stimuli.
    Katsuragi Y; Kashiwayanagi M; Kurihara K
    Brain Res Brain Res Protoc; 1997 Aug; 1(3):292-8. PubMed ID: 9385068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of phosphatidic acid-containing lipoproteins which selectively inhibit bitter taste: high affinity to frog tongue surface and hydrophobic model membranes.
    Katsuragi Y; Sugiura Y; Otsuji K; Kurihara K
    Biochim Biophys Acta; 1996 Apr; 1289(3):322-8. PubMed ID: 8620015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor mechanisms of bitter substances.
    Kurihara K; Katsuragi Y; Matsuoka I; Kashiwayanagi M; Kumazawa T; Shoji T
    Physiol Behav; 1994 Dec; 56(6):1125-32. PubMed ID: 7878081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of electrostatic and hydrophobic interactions of bitter substances with taste receptor membranes to generation of receptor potentials.
    Kumazawa T; Kashiwayanagi M; Kurihara K
    Biochim Biophys Acta; 1986 Aug; 888(1):62-9. PubMed ID: 3488763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.
    Mashiyama K; Nozawa Y; Ohtubo Y; Kumazawa T; Yoshii K
    Brain Res; 2014 Mar; 1556():1-9. PubMed ID: 24513402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of action of some bitter-tasting compounds on frog taste cells.
    Akaike N; Sato M
    Jpn J Physiol; 1976; 26(1):29-40. PubMed ID: 8659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adaptation of the frog tongue to various taste solutions: the effect on gustatory neural responses to bitter stimuli.
    Sugimoto K; Sato T
    Comp Biochem Physiol A Comp Physiol; 1982; 73(3):361-72. PubMed ID: 6128122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quinine suppression of single facial taste fiber responses in the channel catfish.
    Ogawa K; Marui T; Caprio J
    Brain Res; 1997 Sep; 769(2):263-72. PubMed ID: 9374194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral gustatory processing of sweet stimuli by golden hamsters.
    Frank ME; Formaker BK; Hettinger TP
    Brain Res Bull; 2005 Jul; 66(1):70-84. PubMed ID: 15925146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological and behavioural characterization of gustatory responses to antennal 'bitter' taste in honeybees.
    de Brito Sanchez MG; Giurfa M; de Paula Mota TR; Gauthier M
    Eur J Neurosci; 2005 Dec; 22(12):3161-70. PubMed ID: 16367782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing effects of transition metals on the salt taste responses of single fibers of the frog glossopharyngeal nerve: specificity of and similarities among Ca2+, Mg2+ and Na+ taste responses.
    Kitada Y
    Chem Senses; 1994 Jun; 19(3):265-77. PubMed ID: 8055274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt taste responses in the frog glossopharyngeal nerve: different receptor sites for Mg2+ and Na+.
    Kitada Y
    Brain Res; 1986 Aug; 380(1):172-5. PubMed ID: 3489501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium aspartate as a specific enhancer of salty taste perception-sodium aspartate is a possible candidate to decrease excessive intake of dietary salt.
    Nakagawa T; Kohori J; Koike S; Katsuragi Y; Shoji T
    Chem Senses; 2014 Nov; 39(9):781-6. PubMed ID: 25305761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.
    Geran LC; Travers SP
    J Neurophysiol; 2006 Nov; 96(5):2513-27. PubMed ID: 16899635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opponent effects of quinine and sucrose on single fiber taste responses of the chorda tympani nerve.
    Formaker BK; MacKinnon BI; Hettinger TP; Frank ME
    Brain Res; 1997 Oct; 772(1-2):239-42. PubMed ID: 9406978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic studies for the practical use of bitterness inhibitors: selective inhibition of bitterness by phospholipids.
    Katsuragi Y; Mitsui Y; Umeda T; Otsuji K; Yamasawa S; Kurihara K
    Pharm Res; 1997 Jun; 14(6):720-4. PubMed ID: 9210187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential covariation in taste responsiveness to bitter stimuli in rats.
    Brasser SM; Mozhui K; Smith DV
    Chem Senses; 2005 Nov; 30(9):793-9. PubMed ID: 16267162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.