These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8725197)

  • 1. NMR imaging of thermal convection patterns.
    Weis J; Kimmich R; Müller HP
    Magn Reson Imaging; 1996; 14(3):319-27. PubMed ID: 8725197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rayleigh-Bénard percolation transition of thermal convection in porous media: computational fluid dynamics, NMR velocity mapping, NMR temperature mapping.
    Weber M; Kimmich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056301. PubMed ID: 12513590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "One-shot" velocity microscopy: NMR imaging of motion using a single phase-encoding step.
    Xia Y; Callaghan PT
    Magn Reson Med; 1992 Jan; 23(1):138-53. PubMed ID: 1734176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient.
    Maki S
    PLoS One; 2016; 11(9):e0160090. PubMed ID: 27606823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow, diffusion, and thermal convection in percolation clusters: NMR experiments and numerical FEM/FVM simulations.
    Kimmich R; Klemm A; Weber M
    Magn Reson Imaging; 2001; 19(3-4):353-61. PubMed ID: 11445311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined relaxation and displacement experiment: a fast method to acquire T2, diffusion and velocity maps.
    Manz B
    J Magn Reson; 2004 Jul; 169(1):60-7. PubMed ID: 15183357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.
    van der Poel EP; Ostilla-Mónico R; Verzicco R; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013017. PubMed ID: 25122379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell.
    Sun C; Xia KQ; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026302. PubMed ID: 16196706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging of convection in laser-polarized xenon.
    Mair RW; Tseng CH; Wong GP; Cory DG; Walsworth RL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Mar; 61(3):2741-8. PubMed ID: 11046596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.
    Uddin MJ; Khan WA; Ismail AI
    PLoS One; 2015; 10(5):e0122663. PubMed ID: 25933066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of heat transfer coefficients by nuclear magnetic resonance.
    Gultekin DH; Gore JC
    Magn Reson Imaging; 2008 Nov; 26(9):1323-8. PubMed ID: 18524523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection.
    Valori V; Elsinga G; Rohde M; Tummers M; Westerweel J; van der Hagen T
    Phys Rev E; 2017 May; 95(5-1):053113. PubMed ID: 28618524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From convection rolls to finger convection in double-diffusive turbulence.
    Yang Y; Verzicco R; Lohse D
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):69-73. PubMed ID: 26699474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convection patterns in a liquid metal under an imposed horizontal magnetic field.
    Yanagisawa T; Hamano Y; Miyagoshi T; Yamagishi Y; Tasaka Y; Takeda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063020. PubMed ID: 24483570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow visualization of Bénard convection using holographic interferometry.
    Ueda M; Kagawa K; Yamada K; Yamaguchi C; Harada Y
    Appl Opt; 1982 Sep; 21(18):3269-72. PubMed ID: 20396221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI magnitude signal-based proton beam visualisation in water phantoms reflects composite effects of beam-induced buoyant convection and radiation chemistry.
    Schieferecke J; Gantz S; Karsch L; Pawelke J; Hoffmann A
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37607554
    [No Abstract]   [Full Text] [Related]  

  • 17. Imaging of water flow in porous media by magnetic resonance imaging microscopy.
    Deurer M; Vogeler I; Khrapitchev A; Scotter D
    J Environ Qual; 2002; 31(2):487-93. PubMed ID: 11931438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-gradient pulse investigations of fluid transport in porous media.
    Stapf S; Blümich B
    Magn Reson Imaging; 2001; 19(3-4):385-9. PubMed ID: 11445316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent superstructures in Rayleigh-Bénard convection.
    Pandey A; Scheel JD; Schumacher J
    Nat Commun; 2018 May; 9(1):2118. PubMed ID: 29844392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh-Bénard convection with thermal boundary inhomogeneities.
    Bassani F; Poggi D; Ridolfi L; von Hardenberg J
    Phys Rev E; 2022 Feb; 105(2-2):025108. PubMed ID: 35291182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.