These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8726048)

  • 1. Overview of snake venom chemistry.
    Tu AT
    Adv Exp Med Biol; 1996; 391():37-62. PubMed ID: 8726048
    [No Abstract]   [Full Text] [Related]  

  • 2. Snake venom alpha-neurotoxins and other 'three-finger' proteins.
    Tsetlin V
    Eur J Biochem; 1999 Sep; 264(2):281-6. PubMed ID: 10491072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-energy calculations of terminally blocked tetrapeptides from the third loop of short-chain snake venom neurotoxins.
    Roos HM; van Rooyen PH
    Int J Pept Protein Res; 1994 Dec; 44(6):562-7. PubMed ID: 7705978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental studies and potential energy calculations of the blocked tetrapeptide Ac-Lys-Pro-Gly-Ile-NMA from the third loop of short-chain snake venom neurotoxins.
    Roos HM; Van Rooyen PH; Wessels PL
    Int J Pept Protein Res; 1993 Oct; 42(4):305-11. PubMed ID: 8244625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The in vitro production of three-finger neurotoxins from snake venoms with a high abundance of disulfide bonds. Problems and their solutions].
    Liukmanova EN; Shulepko MA; Shenkarev ZO; Dolgikh DA; Kirpichnikov MP
    Bioorg Khim; 2010; 36(2):149-58. PubMed ID: 20531472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom.
    Hassan-Puttaswamy V; Adams DJ; Kini RM
    ACS Chem Biol; 2015 Dec; 10(12):2805-15. PubMed ID: 26448325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins.
    Kieffer B; Driscoll PC; Campbell ID; Willis AC; van der Merwe PA; Davis SJ
    Biochemistry; 1994 Apr; 33(15):4471-82. PubMed ID: 7512825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of the immune modulating effects of enzymatic toxins from snake venoms.
    Burin SM; Menaldo DL; Sampaio SV; Frantz FG; Castro FA
    Int J Biol Macromol; 2018 Apr; 109():664-671. PubMed ID: 29274419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes.
    Fry BG; Lumsden NG; Wüster W; Wickramaratna JC; Hodgson WC; Kini RM
    J Mol Evol; 2003 Oct; 57(4):446-52. PubMed ID: 14708577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenoxins, a family of peptides from dorsal gland secretion of Xenopus laevis related to snake venom cytotoxins and neurotoxins.
    Kolbe HV; Huber A; Cordier P; Rasmussen UB; Bouchon B; Jaquinod M; Vlasak R; Délot EC; Kreil G
    J Biol Chem; 1993 Aug; 268(22):16458-64. PubMed ID: 8393864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha neurotoxins.
    Barber CM; Isbister GK; Hodgson WC
    Toxicon; 2013 May; 66():47-58. PubMed ID: 23416229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae).
    Heyborne WH; Mackessy SP
    Biochimie; 2013 Oct; 95(10):1923-32. PubMed ID: 23851011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational comparison in the snake toxin family.
    Falkenstein RJ; Peña C; Biscoglio MJ; Bonino DJ
    Int J Pept Protein Res; 1996 Mar; 47(3):167-76. PubMed ID: 8740966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid residue: is it structural or functional?
    Golovanov AP; Efremov RG; Jaravine VA; Vergoten G; Arseniev AS
    FEBS Lett; 1995 Nov; 375(1-2):162-6. PubMed ID: 7498470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.
    Thakur R; Mukherjee AK
    Toxicon; 2017 Jun; 131():37-47. PubMed ID: 28288936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A venom protein from the endoparasitoid wasp Pimpla hypochondriaca is similar to snake venom reprolysin-type metalloproteases.
    Parkinson N; Conyers C; Smith I
    J Invertebr Pathol; 2002 Feb; 79(2):129-31. PubMed ID: 12095244
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets.
    Kini RM; Doley R
    Toxicon; 2010 Nov; 56(6):855-67. PubMed ID: 20670641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical interactions at the dimer interface of kappa-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist.
    Grant GA; Al-Rabiee R; Xu XL; Zhang Y
    Biochemistry; 1997 Mar; 36(11):3353-8. PubMed ID: 9116014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of snake neurotoxins' functional classification using a data warehousing approach.
    Siew JP; Khan AM; Tan PT; Koh JL; Seah SH; Koo CY; Chai SC; Armugam A; Brusic V; Jeyaseelan K
    Bioinformatics; 2004 Dec; 20(18):3466-80. PubMed ID: 15271784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on Habu snake venom. IV. Fractionation of Habu snake venom by chromatography on CM-cellulose.
    MAENO H; MITSUHASHI S
    J Biochem; 1961 Nov; 50():434-9. PubMed ID: 14468186
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.