These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 8726969)
1. Effectors of D-[3H]aspartate release from rat cerebellum. Svarna R; Georgopoulos A; Palaiologos G Neurochem Res; 1996 May; 21(5):603-8. PubMed ID: 8726969 [TBL] [Abstract][Full Text] [Related]
2. Regulatory sites and effectors of D-[3H]aspartate release from rat cerebral cortex. Georgopoulos A; Svarna R; Palaiologos G Neurochem Res; 1995 Jan; 20(1):45-9. PubMed ID: 7739758 [TBL] [Abstract][Full Text] [Related]
3. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Palaiologos G; Hertz L; Schousboe A Neurochem Res; 1989 Apr; 14(4):359-66. PubMed ID: 2569674 [TBL] [Abstract][Full Text] [Related]
4. Putative acidic amino acid transmitters in the cerebellum. I. Depolarization-induced release. Levi G; Gordon RD; Gallo V; Wilkin GP; Balàzs R Brain Res; 1982 May; 239(2):425-45. PubMed ID: 6124302 [TBL] [Abstract][Full Text] [Related]
5. Haloperidol reduces K(+)-evoked Ca(2+)-dependent D-[3H]aspartate release from rat hippocampal slices. Tzavara E; Svarna R; Palaiologos G Neurochem Res; 1995 Jan; 20(1):17-22. PubMed ID: 7739754 [TBL] [Abstract][Full Text] [Related]
6. 3H-D-aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K(+)-stimulation. Belhage B; Rehder V; Hansen GH; Kater SB; Schousboe A J Neurosci Res; 1992 Nov; 33(3):436-44. PubMed ID: 1361584 [TBL] [Abstract][Full Text] [Related]
7. Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier. Dunlop J; Grieve A; Damgaard I; Schousboe A; Griffiths R Neuroscience; 1992 Sep; 50(1):107-15. PubMed ID: 1357589 [TBL] [Abstract][Full Text] [Related]
8. Influence of aminooxyacetic acid on the potassium-evoked release of [3H]gamma-aminobutyric acid from slices of rat cerebral cortex. Bedwani JR; Songra AK; Trueman CJ Neurochem Res; 1984 Aug; 9(8):1101-8. PubMed ID: 6493442 [TBL] [Abstract][Full Text] [Related]
9. Hyperammonemic alterations in the metabolism of glutamate and aspartate in rat cerebellar astrocytes. Rao VL; Murthy CR Neurosci Lett; 1992 Apr; 138(1):107-10. PubMed ID: 1357596 [TBL] [Abstract][Full Text] [Related]
10. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. Palaiologos G; Hertz L; Schousboe A J Neurochem; 1988 Jul; 51(1):317-20. PubMed ID: 2898006 [TBL] [Abstract][Full Text] [Related]
11. Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures. Levi G; Patrizio M; Gallo V J Neurochem; 1991 Jan; 56(1):199-206. PubMed ID: 1670952 [TBL] [Abstract][Full Text] [Related]
12. Characterization of K(+)-evoked [3H]D-aspartate outflow in the rat hippocampus in vitro. Simonato M; Bregola G; Muzzolini A; Bianchi C; Beani L Neurochem Int; 1993 Dec; 23(6):555-60. PubMed ID: 8281124 [TBL] [Abstract][Full Text] [Related]
13. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools. Levi G; Gallo V J Neurochem; 1981 Jul; 37(1):22-31. PubMed ID: 6114134 [TBL] [Abstract][Full Text] [Related]
14. Depression by sodium ions of calcium uptake mediated by non-N-methyl-D-aspartate receptors in cultured cerebellar neurons and correlation with evoked D-[3H]aspartate release. Gallo V; Giovannini C; Levi G J Neurochem; 1992 Feb; 58(2):406-15. PubMed ID: 1345937 [TBL] [Abstract][Full Text] [Related]
15. Uptake and metabolism of L-[3H]glutamate and L-[3H]glutamine in adult rat cerebellar slices. de Barry J; Vincendon G; Gombos G Neurochem Res; 1983 Oct; 8(10):1321-35. PubMed ID: 6140648 [TBL] [Abstract][Full Text] [Related]
16. K(+)-stimulated amino acid release from cultured cerebellar neurons: comparison of static and dynamic stimulation paradigms. Rogers KL; Philibert RA; Dutton GR Neurochem Res; 1991 Aug; 16(8):899-904. PubMed ID: 1686299 [TBL] [Abstract][Full Text] [Related]
17. Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. Bosley TM; Woodhams PL; Gordon RD; Balázs R J Neurochem; 1983 Jan; 40(1):189-201. PubMed ID: 6129287 [TBL] [Abstract][Full Text] [Related]
18. Effect of glutamine on glutamate release from hippocampal slices induced by high K+ or by electrical stimulation: interaction with different Ca2+ concentrations. Szerb JC; O'Regan PA J Neurochem; 1985 Jun; 44(6):1724-31. PubMed ID: 2859354 [TBL] [Abstract][Full Text] [Related]
19. Release of D-[3H]aspartic acid from the rat striatum. Effect of veratridine-evoked depolarization, fronto-parietal cortex ablation, and striatal lesions with kainic acid. Arqueros L; Abarca J; Bustos G Biochem Pharmacol; 1985 Apr; 34(8):1217-24. PubMed ID: 2581579 [TBL] [Abstract][Full Text] [Related]
20. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells. Schousboe A; Frandsen A; Drejer J Neurochem Res; 1989 Sep; 14(9):871-5. PubMed ID: 2574422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]