These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8727190)

  • 1. Mechanical modulation of vertebral body growth. Implications for scoliosis progression.
    Stokes IA; Spence H; Aronsson DD; Kilmer N
    Spine (Phila Pa 1976); 1996 May; 21(10):1162-7. PubMed ID: 8727190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progression of vertebral wedging in an asymmetrically loaded rat tail model.
    Mente PL; Stokes IA; Spence H; Aronsson DD
    Spine (Phila Pa 1976); 1997 Jun; 22(12):1292-6. PubMed ID: 9201830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical modulation of intervertebral disc thickness in growing rat tails.
    Stokes IA; Aronsson DD; Spence H; Iatridis JC
    J Spinal Disord; 1998 Jun; 11(3):261-5. PubMed ID: 9657554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical modulation of calf tail vertebral growth: implications for scoliosis progression.
    Aronsson DD; Stokes IA; Rosovsky J; Spence H
    J Spinal Disord; 1999 Apr; 12(2):141-6. PubMed ID: 10229529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of remodeling and asymmetric growth in vertebral wedging.
    Aronsson DD; Stokes IA; McBride C
    Stud Health Technol Inform; 2010; 158():11-5. PubMed ID: 20543392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical modulation of growth for the correction of vertebral wedge deformities.
    Mente PL; Aronsson DD; Stokes IA; Iatridis JC
    J Orthop Res; 1999 Jul; 17(4):518-24. PubMed ID: 10459757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature.
    Stokes IA
    Spine (Phila Pa 1976); 1997 Nov; 22(21):2495-503. PubMed ID: 9383855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of posterior distraction on vertebral growth in immature pigs: an experimental simulation of growing rod technique.
    Yilmaz G; Huri G; Demirkran G; Dağloğlu K; Ozkan C; Alanay A; Acaroglu E; Yazici M
    Spine (Phila Pa 1976); 2010 Apr; 35(7):730-3. PubMed ID: 20195208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis - A cross sectional study in 150 patients.
    Modi HN; Suh SW; Song HR; Yang JH; Kim HJ; Modi CH
    Scoliosis; 2008 Aug; 3():11. PubMed ID: 18700985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation.
    Stokes IA
    Eur Spine J; 2007 Oct; 16(10):1621-8. PubMed ID: 17653775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling.
    Aronsson DD; Stokes IA
    J Pediatr Orthop; 2011; 31(1 Suppl):S99-106. PubMed ID: 21173627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Remodeling and Asymmetrical Growth to Vertebral Wedging in a Scoliosis Model.
    Aronsson DD; Stokes IA; McBride CA
    Spine Deform; 2013 Jan; 1(1):2-9. PubMed ID: 27927317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth modulation and remodeling by means of posterior tethering technique for correction of early-onset scoliosis with thoracolumbar kyphosis.
    Ahmad AA; Aker L; Hanbali Y; Sbaih A; Nazzal Z
    Eur Spine J; 2017 Jun; 26(6):1748-1755. PubMed ID: 27942940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.