These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 872725)

  • 1. [Nature of DNA-protein interactions in chromatin. Analysis of the binding sequence of histone fractions with DNA and polyphosphates].
    Paponov VD; Gromov PS; Sokolov NA; Spitkovskiĭ DM
    Dokl Akad Nauk SSSR; 1977 May; 234(2):479-81. PubMed ID: 872725
    [No Abstract]   [Full Text] [Related]  

  • 2. [Interaction of the non-histone protein PS1 with some chromatin components].
    Karavanov AA; Chestkov VV
    Biokhimiia; 1981 Sep; 46(9):1712-6. PubMed ID: 6271268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Competitive binding of histones to DNA and the problem of chromatin self-assembly].
    Paponov VD
    Biokhimiia; 1980 Sep; 45(9):1539-48. PubMed ID: 7248355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling chromatin structures for transcription: what happens to the histones?
    Steger DJ; Workman JL
    Bioessays; 1996 Nov; 18(11):875-84. PubMed ID: 8939065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Is the binding strength of histone fractions with DNA different?].
    Paponov VD; Gromov PS; Rupasov VV
    Biull Eksp Biol Med; 1980 Aug; 90(8):163-5. PubMed ID: 7407387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H1 and chromatin interactions in human fibroblast nuclei after H1 depletion and reconstitution with H1 subfractions.
    Kostova NN; Srebreva L; Markov DV; Rundquist I
    Cytometry A; 2004 Apr; 58(2):132-9. PubMed ID: 15057966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the dynamic nature of the interactions between nuclear proteins and histones upon DNA damage using an immobilized peptide chemical proteomics approach.
    Dirksen EH; Pinkse MW; Rijkers DT; Cloos J; Liskamp RM; Slijper M; Heck AJ
    J Proteome Res; 2006 Sep; 5(9):2380-8. PubMed ID: 16944950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation.
    Ishibashi T; Thambirajah AA; Ausió J
    FEBS Lett; 2008 Apr; 582(7):1157-62. PubMed ID: 18339321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the possibility that H1 histone interaction with DNA occurs through phosphates connecting lysine and arginine side chain groups.
    Piscopo M; De Petrocellis L; Conte M; Pulcrano G; Geraci G
    Acta Biochim Pol; 2006; 53(3):507-13. PubMed ID: 17019436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [On mechanisms determining the relationships between the histone component of chromatin and DNA].
    Paponov VD; Gromov PS; Sokolov NA; Spitkovskií DM
    Biokhimiia; 1978 Feb; 43(2):274-82. PubMed ID: 565655
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of the binding of C-reactive protein to chromatin subunits.
    Du Clos TW; Marnell L; Zlock LR; Burlingame RW
    J Immunol; 1991 Feb; 146(4):1220-5. PubMed ID: 1991964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the binding of C-reactive protein to histones and chromatin.
    Du Clos TW; Zlock LT; Rubin RL
    J Immunol; 1988 Dec; 141(12):4266-70. PubMed ID: 3198919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The action of benzimidazole derivative preparations on the formation of DNA-protein cross-links in the UV irradiation of chromatin].
    Mil' EM; Biniukov VI; Zhil'tsova VM; Stoliarova LG; Kuznetsov IuV
    Izv Akad Nauk SSSR Biol; 1991; (3):458-62. PubMed ID: 1955618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid exchange of histone H1.1 on chromatin in living human cells.
    Lever MA; Th'ng JP; Sun X; Hendzel MJ
    Nature; 2000 Dec; 408(6814):873-6. PubMed ID: 11130728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tilling the chromatin landscape: emerging methods for the discovery and profiling of protein-DNA interactions.
    Rodriguez BA; Huang TH
    Biochem Cell Biol; 2005 Aug; 83(4):525-34. PubMed ID: 16094456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations.
    Korolev N; Vorontsova OV; Nordenskiöld L
    Prog Biophys Mol Biol; 2007; 95(1-3):23-49. PubMed ID: 17291569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of the supranucleosomal chromatin organization on histone-DNA interrelations].
    Paponov VD; Gromov PS
    Biull Eksp Biol Med; 1985 May; 99(5):590-2. PubMed ID: 4005416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of histones with DNA in chromatin. A new method of covalent binding of histones to DNA available for their localization on DNA].
    Levina ES; Bavykin SG; Shik VV; Mirzabekov AD
    Biokhimiia; 1980 Jun; 45(6):1133-45. PubMed ID: 6783129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays.
    Hanlon SE; Lieb JD
    Curr Opin Genet Dev; 2004 Dec; 14(6):697-705. PubMed ID: 15531167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Chromatin compactification using a model system of DNA-protein complexes].
    Chikhirzhina EV; Kostyleva EI; Ramm EI; Vorob'ev VI
    Tsitologiia; 1998; 40(10):883-8. PubMed ID: 9864819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.