These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 8727380)
81. Glutamate is a fast excitatory transmitter at some buccal neuromuscular synapses in Aplysia. Fox LE; Lloyd PE J Neurophysiol; 1999 Sep; 82(3):1477-88. PubMed ID: 10482763 [TBL] [Abstract][Full Text] [Related]
82. Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea. Vehovszky A ; Elliott CJ J Neurophysiol; 2001 Aug; 86(2):792-808. PubMed ID: 11495951 [TBL] [Abstract][Full Text] [Related]
83. Feeding CPG in Aplysia directly controls two distinct outputs of a compartmentalized interneuron that functions as a CPG element. Sasaki K; Due MR; Jing J; Weiss KR J Neurophysiol; 2007 Dec; 98(6):3796-801. PubMed ID: 17913984 [TBL] [Abstract][Full Text] [Related]
84. Characterization of the membrane ion currents of a model molluscan muscle, the accessory radula closer muscle of Aplysia californica. III. Depolarization-activated Ca current. Brezina V; Evans CG; Weiss KR J Neurophysiol; 1994 Jun; 71(6):2126-38. PubMed ID: 7931506 [TBL] [Abstract][Full Text] [Related]
85. Premotor neurons B51 and B52 in the buccal ganglia of Aplysia californica: synaptic connections, effects on ongoing motor rhythms, and peptide modulation. Plummer MR; Kirk MD J Neurophysiol; 1990 Mar; 63(3):539-58. PubMed ID: 2329360 [TBL] [Abstract][Full Text] [Related]
86. Identification and characterization of cerebral-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia. Rosen SC; Teyke T; Miller MW; Weiss KR; Kupfermann I J Neurosci; 1991 Nov; 11(11):3630-55. PubMed ID: 1941100 [TBL] [Abstract][Full Text] [Related]
87. Functional differentiation of a population of electrically coupled heterogeneous elements in a microcircuit. Sasaki K; Cropper EC; Weiss KR; Jing J J Neurosci; 2013 Jan; 33(1):93-105. PubMed ID: 23283325 [TBL] [Abstract][Full Text] [Related]
88. The kinematics of swallowing in the buccal mass of Aplysia californica. Drushel RF; Neustadter DM; Shallenberger LL; Crago PE; Chiel HJ J Exp Biol; 1997 Feb; 200(Pt 4):735-52. PubMed ID: 9076964 [TBL] [Abstract][Full Text] [Related]
89. Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia. Lu H; McManus JM; Cullins MJ; Chiel HJ J Neurosci; 2015 Mar; 35(12):5051-66. PubMed ID: 25810534 [TBL] [Abstract][Full Text] [Related]
90. State dependence of spike timing and neuronal function in a motor pattern generating network. Wu JS; Due MR; Sasaki K; Proekt A; Jing J; Weiss KR J Neurosci; 2007 Oct; 27(40):10818-31. PubMed ID: 17913915 [TBL] [Abstract][Full Text] [Related]
91. Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin. Xin Y; Hurwitz I; Perrins R; Evans CG; Alexeeva V; Weiss KR; Kupfermann I J Neurophysiol; 1999 Feb; 81(2):507-20. PubMed ID: 10036255 [TBL] [Abstract][Full Text] [Related]
92. Frequency-dependent regulation of afferent transmission in the feeding circuitry of Aplysia. Evans CG; Jing J; Proekt A; Rosen SC; Cropper EC J Neurophysiol; 2003 Dec; 90(6):3967-77. PubMed ID: 14507990 [TBL] [Abstract][Full Text] [Related]
93. Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions. Perrins R; Weiss KR J Neurosci; 1998 May; 18(10):3977-89. PubMed ID: 9570824 [TBL] [Abstract][Full Text] [Related]
94. Activity of an identified histaminergic neuron, and its possible role in arousal of feeding behavior in semi-intact Aplysia. Weiss KR; Chiel HJ; Koch U; Kupfermann I J Neurosci; 1986 Aug; 6(8):2403-15. PubMed ID: 3746414 [TBL] [Abstract][Full Text] [Related]
95. A pair of reciprocally inhibitory histaminergic sensory neurons are activated within the same phase of ingestive motor programs in Aplysia. Evans CG; Alexeeva V; Rybak J; Karhunen T; Weiss KR; Cropper EC J Neurosci; 1999 Jan; 19(2):845-58. PubMed ID: 9880604 [TBL] [Abstract][Full Text] [Related]
97. Characterization of the membrane ion currents of a model molluscan muscle, the accessory radula closer muscle of Aplysia california. I. Hyperpolarization-activated currents. Brezina V; Evans CG; Weiss KR J Neurophysiol; 1994 Jun; 71(6):2093-112. PubMed ID: 7523611 [TBL] [Abstract][Full Text] [Related]
98. Motor control of buccal muscles in Aplysia. Cohen JL; Weiss KR; Kupfermann I J Neurophysiol; 1978 Jan; 41(1):157-80. PubMed ID: 202682 [No Abstract] [Full Text] [Related]
99. Pattern generation in the buccal system of freely behaving Lymnaea stagnalis. Jansen RF; Pieneman AW; Maat AT J Neurophysiol; 1999 Dec; 82(6):3378-91. PubMed ID: 10601469 [TBL] [Abstract][Full Text] [Related]
100. Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. Nargeot R; Petrissans C; Simmers J J Neurosci; 2007 Jul; 27(30):8059-70. PubMed ID: 17652597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]