These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8727852)

  • 21. Sensory and biomechanical responses to distension of the normal human rectum and sigmoid colon.
    Petersen P; Gao C; Rössel P; Qvist P; Arendt-Nielsen L; Gregersen H; Drewes AM
    Digestion; 2001; 64(3):191-9. PubMed ID: 11786668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical remodeling of the chronically obstructed Guinea pig small intestine.
    Storkholm JH; Zhao J; Villadsen GE; Hager H; Jensen SL; Gregersen H
    Dig Dis Sci; 2007 Feb; 52(2):336-46. PubMed ID: 17219069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of biomechanical properties in guinea pig esophagus by means of high frequency ultrasound and impedance planimetry.
    Assentoft JE; Gregersen H; O'Brien WD
    Dig Dis Sci; 2000 Jul; 45(7):1260-6. PubMed ID: 10961701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Passive elastic properties of the rat aorta.
    Weizsäcker HW; Kampp TD
    Biomed Tech (Berl); 1990 Oct; 35(10):224-34. PubMed ID: 2285771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical properties of duodenal wall and duodenal tone during phase I and phase II of the MMC.
    Gregersen H; Orvar K; Christensen J
    Am J Physiol; 1992 Nov; 263(5 Pt 1):G795-801. PubMed ID: 1443153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impedance planimetry: an integrated approach for assessing sensory, active, and passive biomechanical properties of the human esophagus.
    Rao SS; Hayek B; Summers RW
    Am J Gastroenterol; 1995 Mar; 90(3):431-8. PubMed ID: 7872283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Mechanical Distension of the Human Oesophagus: Sensory and Biomechanical Findings.
    Drcwes AM; Pedersen J; Liu W; Arendt-Nielsen L; Gregersen H
    Scand J Gastroenterol; 2003 Jan; 38(1):27-35. PubMed ID: 27897094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of methods used for measurement of rectal compliance.
    Krogh K; Ryhammer AM; Lundby L; Gregersen H; Laurberg TS
    Dis Colon Rectum; 2001 Feb; 44(2):199-206. PubMed ID: 11227936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical characteristics of the human esophagus.
    Orvar KB; Gregersen H; Christensen J
    Dig Dis Sci; 1993 Feb; 38(2):197-205. PubMed ID: 8425432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of low-grade conductive heating on vascular compliance during in vitro balloon angioplasty.
    Mitchel JF; Fram DB; Aretz TA; Gillam LD; Woronick C; Waters DD; McKay RG
    Am Heart J; 1994 Jul; 128(1):21-7. PubMed ID: 8017280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo biomechanical assessment of anterior rabbit urethra after repair of surgically created hypospadias.
    Lalla M; Gregersen H; Olsen LH; Jørgensen TM
    J Urol; 2010 Aug; 184(2):675-80. PubMed ID: 20639035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of regional aortic stiffness using MR elastography: A phantom and ex-vivo porcine aorta study.
    Zhang N; Chen J; Yin M; Glaser KJ; Xu L; Ehman RL
    Magn Reson Imaging; 2016 Feb; 34(2):91-6. PubMed ID: 26597836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smooth muscle tone and arterial wall viscosity: an in vivo/in vitro study.
    Boutouyrie P; Boumaza S; Challande P; Lacolley P; Laurent S
    Hypertension; 1998 Aug; 32(2):360-4. PubMed ID: 9719068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of increased pulse pressure on cerebral arterioles.
    Baumbach GL
    Hypertension; 1996 Feb; 27(2):159-67. PubMed ID: 8567036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical wall properties of the porcine rectum: a study using impedance planimetry.
    Dall FH; Jørgensen CS; Djurhuus JC; Gregersen H
    Dig Dis; 1991; 9(6):347-53. PubMed ID: 1804575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distensibility of the mouse rectum: application of impedance planimetry for studying age-related changes.
    Lundby ; Dall ; Gregersen ; Overgaard ; Laurberg
    Colorectal Dis; 1999 Jan; 1(1):34-41. PubMed ID: 23577682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures.
    Latham RD; Westerhof N; Sipkema P; Rubal BJ; Reuderink P; Murgo JP
    Circulation; 1985 Dec; 72(6):1257-69. PubMed ID: 4064270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta.
    Tonar Z; Kubíková T; Prior C; Demjén E; Liška V; Králíčková M; Witter K
    Ann Anat; 2015 Sep; 201():79-90. PubMed ID: 26232584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the aortic stress-strain relation in uniaxial tension.
    Sokolis DP; Boudoulas H; Karayannacos PE
    J Biomech; 2002 Sep; 35(9):1213-23. PubMed ID: 12163311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.