These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 8727968)
1. Interaction of glycyl-phenylalanine with carbohydrates as a model of N-terminal glycation of proteins. Argirov OK; Kerina II Ophthalmic Res; 1996; 28 Suppl 1():62-4. PubMed ID: 8727968 [TBL] [Abstract][Full Text] [Related]
2. Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose. Argirova M; Breipohl W J Biochem Mol Toxicol; 2002; 16(3):140-5. PubMed ID: 12112714 [TBL] [Abstract][Full Text] [Related]
3. N-(L-2-aminopentanoyl)-L-phenylalanine dihydrate, a hydrophobic dipeptide with a nonproteinogenic residue. Görbitz CH; Yadav VN Acta Crystallogr C; 2013 Sep; 69(Pt 9):1067-9. PubMed ID: 24005523 [TBL] [Abstract][Full Text] [Related]
4. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Kwak EJ; Lim SI Amino Acids; 2004 Aug; 27(1):85-90. PubMed ID: 15309575 [TBL] [Abstract][Full Text] [Related]
5. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. Yan H; Willis AC; Harding JJ Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541 [TBL] [Abstract][Full Text] [Related]
6. Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures. Puttaiah S; Zhang Y; Pilch HA; Pfahler C; Oya-Ito T; Sayre LM; Nagaraj RH Arch Biochem Biophys; 2006 Feb; 446(2):186-96. PubMed ID: 16406213 [TBL] [Abstract][Full Text] [Related]
7. Glycation of lysine-containing dipeptides. Mennella C; Visciano M; Napolitano A; Del Castillo MD; Fogliano V J Pept Sci; 2006 Apr; 12(4):291-6. PubMed ID: 16180244 [TBL] [Abstract][Full Text] [Related]
8. The gas-phase dipeptide analogue acetyl-phenylalanyl-amide: a model for the study of side chain/backbone interactions in proteins. Chin W; Mons M; Dognon JP; Mirasol R; Chass G; Dimicoli I; Piuzzi F; Butz P; Tardivel B; Compagnon I; von Helden G; Meijer G J Phys Chem A; 2005 Jun; 109(24):5281-8. PubMed ID: 16839051 [TBL] [Abstract][Full Text] [Related]
9. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593 [TBL] [Abstract][Full Text] [Related]
10. Study of the conformational profile of selected unnatural amino acid residues derived from L-phenylalanine. Gomez-Catalan J; Perez JJ; Jimenez AI; Cativiela C J Pept Sci; 1999 Jun; 5(6):251-62. PubMed ID: 10463780 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of ascorbic acid-induced modifications in lens proteins by peptides. Argirova M; Argirov O J Pept Sci; 2003 Mar; 9(3):170-6. PubMed ID: 12675499 [TBL] [Abstract][Full Text] [Related]
12. Sites of glycation of beta B2-crystallin by glucose and fructose. Zhao HR; Smith JB; Jiang XY; Abraham EC Biochem Biophys Res Commun; 1996 Dec; 229(1):128-33. PubMed ID: 8954094 [TBL] [Abstract][Full Text] [Related]
13. Thermal glycation of proteins by D-glucose and D-fructose. Kańska U; Boratyński J Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios. Luers L; Rysiewski K; Dumpitak C; Birkmann E Rejuvenation Res; 2012 Apr; 15(2):201-5. PubMed ID: 22533432 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases. Fusaro MB; Chagnault V; Postel D Carbohydr Res; 2015 May; 409():9-19. PubMed ID: 25889471 [TBL] [Abstract][Full Text] [Related]
16. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins. Mukkamala D; Zhang Y; Oldfield E J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558 [TBL] [Abstract][Full Text] [Related]
17. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Yousefi R; Javadi S; Amirghofran S; Oryan A; Moosavi-Movahedi AA Int J Biol Macromol; 2016 Jan; 82():328-38. PubMed ID: 26478093 [TBL] [Abstract][Full Text] [Related]
18. Testing biological activity of model Maillard reaction products: studies on gastric smooth muscle tissues. Argirova MD; Stefanova ID; Krustev AD; Turiiski VI Amino Acids; 2010 Mar; 38(3):797-803. PubMed ID: 19350367 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of a new pi-deficient phenylalanine derivative from a common 1,4-diketone intermediate and study of the influence of aromatic density on prolyl amide isomer population. Dörr A; Lubell WD Biopolymers; 2007; 88(2):290-9. PubMed ID: 17143857 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric conjugate reductions with samarium diiodide: asymmetric synthesis of (2S,3R)- and (2S,3S)-[2-2H,3-2H]-leucine-(S)-phenylalanine dipeptides and (2S,3R)-[2-(2)H,3-2H]-phenylalanine methyl ester. Davies SG; Rodriguez-Solla H; Tamayo JA; Cowley AR; Concellon C; Garner AC; Parkes AL; Smith AD Org Biomol Chem; 2005 Apr; 3(8):1435-47. PubMed ID: 15827639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]