These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 8728319)
1. Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. Heuman DM; Bajaj RS; Lin Q J Lipid Res; 1996 Mar; 37(3):562-73. PubMed ID: 8728319 [TBL] [Abstract][Full Text] [Related]
2. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles. Luk AS; Kaler EW; Lee SP Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403 [TBL] [Abstract][Full Text] [Related]
3. Membrane cholesterol content of cholesterol/phospholipid vesicles determines the susceptibility to both damage and protection by bile salts: implications for bile physiology. van de Heijning BJ; van den Broek AM; van Berge-Henegouwen GP Eur J Gastroenterol Hepatol; 1997 May; 9(5):473-9. PubMed ID: 9187880 [TBL] [Abstract][Full Text] [Related]
4. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
5. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. Venneman NG; Huisman SJ; Moschetta A; vanBerge-Henegouwen GP; van Erpecum KJ Biochim Biophys Acta; 2002 Jul; 1583(2):221-8. PubMed ID: 12117566 [TBL] [Abstract][Full Text] [Related]
6. A study of the adsorption of bile salts onto model lecithin membranes. Ben Mouaz A ; Lindheimer M; Montet JC; Zajac J; Lagerge S Colloids Surf B Biointerfaces; 2001 Feb; 20(2):119-127. PubMed ID: 11087984 [TBL] [Abstract][Full Text] [Related]
7. Dissolution of human cholesterol gallstones in bile salt/lecithin mixtures: effect of bile salt hydrophobicity and various pHs. Angelico M; Mogavero L; Baiocchi L; Nistri A; Gandin C Scand J Gastroenterol; 1995 Dec; 30(12):1178-85. PubMed ID: 9053971 [TBL] [Abstract][Full Text] [Related]
8. Distribution of mixtures of bile salt taurine conjugates between lecithin-cholesterol vesicles and aqueous media: an empirical model. Heuman DM J Lipid Res; 1997 Jun; 38(6):1217-28. PubMed ID: 9215549 [TBL] [Abstract][Full Text] [Related]
9. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity. Heuman DM Ital J Gastroenterol; 1995 Sep; 27(7):372-5. PubMed ID: 8563009 [TBL] [Abstract][Full Text] [Related]
10. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Mühlfeld S; Domanova O; Berlage T; Stross C; Helmer A; Keitel V; Häussinger D; Kubitz R Hepatology; 2012 Dec; 56(6):2387-97. PubMed ID: 22806967 [TBL] [Abstract][Full Text] [Related]
11. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Heuman DM; Bajaj R Gastroenterology; 1994 May; 106(5):1333-41. PubMed ID: 8174892 [TBL] [Abstract][Full Text] [Related]
12. Effect of bile acids on lipid peroxidation: the role of iron. Sreejayan N; von Ritter C Free Radic Biol Med; 1998 Jul; 25(1):50-6. PubMed ID: 9655521 [TBL] [Abstract][Full Text] [Related]
13. Tauroursodeoxycholate counteracts hepatocellular lysis induced by tensioactive bile salts by preventing plasma membrane-micelle transition. Basiglio CL; Mottino AD; Roma MG Chem Biol Interact; 2010 Dec; 188(3):386-92. PubMed ID: 20797393 [TBL] [Abstract][Full Text] [Related]
14. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. Cohen DE; Angelico M; Carey MC J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205 [TBL] [Abstract][Full Text] [Related]
15. Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes. Albalak A; Zeidel ML; Zucker SD; Jackson AA; Donovan JM Biochemistry; 1996 Jun; 35(24):7936-45. PubMed ID: 8672496 [TBL] [Abstract][Full Text] [Related]
16. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Long MA; Kaler EW; Lee SP Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505 [TBL] [Abstract][Full Text] [Related]
17. Estimation of cholesterol solubilization by a mixed micelle binding model in aqueous tauroursodeoxycholate:lecithin:cholesterol solutions. Higuchi WI; Tzeng CS; Chang SJ; Chiang HJ; Liu CL J Pharm Sci; 2008 Jan; 97(1):340-9. PubMed ID: 17786967 [TBL] [Abstract][Full Text] [Related]
19. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile. Cohen DE; Leighton LS; Carey MC Am J Physiol; 1992 Sep; 263(3 Pt 1):G386-95. PubMed ID: 1415551 [TBL] [Abstract][Full Text] [Related]
20. Transbilayer movement of fully ionized taurine-conjugated bile salts depends upon bile salt concentration, hydrophobicity, and membrane cholesterol content. Donovan JM; Jackson AA Biochemistry; 1997 Sep; 36(38):11444-51. PubMed ID: 9298964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]