BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8728846)

  • 21. Coronary sinus venoarterial CO2 difference in different hemodynamic states.
    Vretzakis G; Ferdi E; Papaziogas B; Dragoumanis C; Pneumatikos J; Tsangaris I; Tsakiridis K; Konstantinou F
    Acta Anaesthesiol Belg; 2004; 55(3):221-7. PubMed ID: 15515299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid-base and ion regulatory disturbances.
    Cooper CA; Wilson RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2542-50. PubMed ID: 18626090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of branchial carbonic anhydrase in acid-base regulation in rainbow trout (Oncorhynchus mykiss).
    Georgalis T; Perry SF; Gilmour KM
    J Exp Biol; 2006 Feb; 209(Pt 3):518-30. PubMed ID: 16424102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolated perfused head of rainbow trout. I. Gas transfer, acid-base balance, and hemodynamics.
    Perry SF; Booth CE; McDonald DG
    Am J Physiol; 1985 Aug; 249(2 Pt 2):R246-54. PubMed ID: 3927751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Bohr/Haldane effect: a model-based uncovering of the full extent of its impact on O
    Malte H; Lykkeboe G
    J Appl Physiol (1985); 2018 Sep; 125(3):916-922. PubMed ID: 29745803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss.
    Harter TS; May AG; Federspiel WJ; Supuran CT; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R397-R407. PubMed ID: 29641235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Buffering limits plasma HCO3- dehydration when red blood cell anion exchange is inhibited.
    Gilmour KM; Desforges PR; Perry SF
    Respir Physiol Neurobiol; 2004 May; 140(2):173-87. PubMed ID: 15134665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between ion and gas transfer in freshwater teleost fish.
    Randall DJ; Brauner C
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):3-8. PubMed ID: 11253798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide synthase inhibition in thoroughbred horses augments O2 extraction at rest and submaximal exercise, but not during short-term maximal exercise.
    Manohar M; Goetz TE; Hassan AS
    Equine Vet J Suppl; 2006 Aug; (36):481-6. PubMed ID: 17402470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia delays hematopoiesis: retention of embryonic hemoglobin and erythrocytes in larval rainbow trout, Oncorhynchus mykiss, during chronic hypoxia exposure.
    Bianchini K; Wright PA
    J Exp Biol; 2013 Dec; 216(Pt 23):4415-25. PubMed ID: 24031065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HCO3- dehydration by the blood of rainbow trout following exhaustive exercise.
    Wood CM
    Respir Physiol; 1994; 98(3):305-18. PubMed ID: 7899731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noninvasive determination of cardiac output in patients with severe airflow limitation.
    Lands LC; Canny G; Xu F; Coates AL
    Am J Respir Crit Care Med; 1996 Mar; 153(3):981-4. PubMed ID: 8630583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions.
    Cook CL; Coughlin DJ
    J Fish Biol; 2010 Nov; 77(7):1716-23. PubMed ID: 21078030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The physiological basis for altered Na+ and Cl- movements across the gills of rainbow trout (Oncorhynchus mykiss) in alkaline (pH = 9.5) water.
    Wilkie MP; Laurent P; Wood CM
    Physiol Biochem Zool; 1999; 72(3):360-8. PubMed ID: 10222330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exhaustive exercise, animal stress, and environmental hypercapnia on motility of sperm of steelhead trout (Oncorhynchus mykiss).
    Zuccarelli MD; Ingermann RL
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):247-53. PubMed ID: 17303460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hematocrit in oxygen transport and swimming in rainbow trout (Oncorhynchus mykiss).
    Gallaugher P; Thorarensen H; Farrell AP
    Respir Physiol; 1995 Dec; 102(2-3):279-92. PubMed ID: 8904019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological tradeoffs may underlie the evolution of hypoxia tolerance and exercise performance in sunfish (Centrarchidae).
    Crans KD; Pranckevicius NA; Scott GR
    J Exp Biol; 2015 Oct; 218(Pt 20):3264-75. PubMed ID: 26347564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normoxic limitation of maximal oxygen consumption rate, aerobic scope and cardiac performance in exhaustively exercised rainbow trout (Oncorhynchus mykiss).
    McArley TJ; Morgenroth D; Zena LA; Ekström AT; Sandblom E
    J Exp Biol; 2021 Aug; 224(15):. PubMed ID: 34323276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rainbow trout gills are a sensitive biomarker of short-term exposure to waterborne copper.
    Daglish RW; Nowak BF
    Arch Environ Contam Toxicol; 2002 Jul; 43(1):98-102. PubMed ID: 12045879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.