These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. [Age and whole blood viscoelasticity. A risk factor study]. Oder W; Kollegger H; Baumgartner C; Zeiler K; Oder B; Deecke L Acta Med Austriaca; 1991; 18 Suppl 1():71-4. PubMed ID: 1950394 [TBL] [Abstract][Full Text] [Related]
6. [Microrheological disorders of erythrocytes in patients with hypertension]. Kitaeva ND; Shabanov VA; Levin GIa; Kostrov VA Kardiologiia; 1991 Jan; 31(1):51-4. PubMed ID: 2046250 [TBL] [Abstract][Full Text] [Related]
7. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Stoltz JF; Donner M Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037 [TBL] [Abstract][Full Text] [Related]
8. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Faivre M; Abkarian M; Bickraj K; Stone HA Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784 [TBL] [Abstract][Full Text] [Related]
9. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. Mehri R; Mavriplis C; Fenech M PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907 [TBL] [Abstract][Full Text] [Related]
10. Low viscosity Ektacytometry and its validation tested by flow chamber. Yao W; Wen Z; Yan Z; Sun D; Ka W; Xie L; Chien S J Biomech; 2001 Nov; 34(11):1501-9. PubMed ID: 11672725 [TBL] [Abstract][Full Text] [Related]
11. An energy-rate based blood viscosity model incorporating aggregate network dynamics. Kaliviotis E; Yianneskis M Biorheology; 2009; 46(6):487-508. PubMed ID: 20164632 [TBL] [Abstract][Full Text] [Related]
13. Phenomenological characterization of blood's intermediate shear rate: a new concept for hemorheology. Tabesh H; Poorkhalil A; Akbari H; Rafiei F; Mottaghy K Phys Eng Sci Med; 2022 Dec; 45(4):1205-1217. PubMed ID: 36319841 [TBL] [Abstract][Full Text] [Related]
14. The influence of erythrocyte shape on suspension viscosities. Reinhart WH; Singh-Marchetti M; Straub PW Eur J Clin Invest; 1992 Jan; 22(1):38-44. PubMed ID: 1559541 [TBL] [Abstract][Full Text] [Related]
15. On the effect of microstructural changes of blood on energy dissipation in Couette flow. Kaliviotis E; Yianneskis M Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131 [TBL] [Abstract][Full Text] [Related]
16. [The rheological properties of the erythrocytes. Current study methods]. Katiukhin LN Fiziol Zh Im I M Sechenova; 1995 Jun; 81(6):122-9. PubMed ID: 8845870 [TBL] [Abstract][Full Text] [Related]
17. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Brun JF; Varlet-Marie E; Romain AJ; Guiraudou M; Raynaud de Mauverger E Clin Hemorheol Microcirc; 2013; 55(1):15-27. PubMed ID: 23478223 [TBL] [Abstract][Full Text] [Related]
18. Effect of hematocrit on wall shear rate in oscillatory flow: do the elastic properties of blood play a role? Brookshier KK; Tarbell JM Biorheology; 1991; 28(6):569-87. PubMed ID: 1818745 [TBL] [Abstract][Full Text] [Related]
19. Determination of whole blood and plasma viscosity in term neonates by flow curve analysis with the LS300 viscometer1. Kuss N; Bauknecht E; Felbinger C; Gehm J; Gehm L; Pöschl J; Ruef P Clin Hemorheol Microcirc; 2015 Oct; 63(1):3-14. PubMed ID: 26444620 [TBL] [Abstract][Full Text] [Related]
20. Temperature-dependent threshold shear stress of red blood cell aggregation. Lim HJ; Lee YJ; Nam JH; Chung S; Shin S J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]