These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8729678)

  • 1. Fatigue vs. shortening-induced deactivation in striated muscle.
    Edman KA
    Acta Physiol Scand; 1996 Mar; 156(3):183-92. PubMed ID: 8729678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.
    Edman KA
    Acta Physiol Scand; 1980 May; 109(1):15-26. PubMed ID: 6969530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shortening induced deactivation of skinned fibres of frog and mouse striated muscle.
    Ekelund MC; Edman KA
    Acta Physiol Scand; 1982 Oct; 116(2):189-99. PubMed ID: 6820231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of calcium into the myofibrillar space in response to active shortening of striated muscle.
    Edman KAP; Caputo C
    Acta Physiol (Oxf); 2017 Oct; 221(2):142-148. PubMed ID: 28317338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog.
    Edman KA
    J Physiol; 1975 Mar; 246(1):255-75. PubMed ID: 1079534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue in frog skeletal muscle fibres and effects of methylxanthine derivatives.
    Khan AR; Bengtsson B
    Acta Physiol Scand; 1985 May; 124(1):35-41. PubMed ID: 3874523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force-velocity relationship at negative loads (assisted shortening) studied in isolated, intact muscle fibres of the frog.
    Edman KA
    Acta Physiol (Oxf); 2014 Aug; 211(4):609-16. PubMed ID: 24888542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle.
    Laouris Y; Bevan L; Reinking RM; Stuart DG
    Can J Physiol Pharmacol; 2004; 82(8-9):577-88. PubMed ID: 15523515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle.
    Lännergren J; Westerblad H
    J Physiol; 1991 Mar; 434():307-22. PubMed ID: 1902515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol.
    Moopanar TR; Allen DG
    J Physiol; 2006 Feb; 571(Pt 1):191-200. PubMed ID: 16339177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres.
    Edman KA; Mattiazzi AR
    J Muscle Res Cell Motil; 1981 Sep; 2(3):321-34. PubMed ID: 6974740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.