These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 8729686)
1. High-and low-frequency fatigue revisited. Jones DA Acta Physiol Scand; 1996 Mar; 156(3):265-70. PubMed ID: 8729686 [TBL] [Abstract][Full Text] [Related]
2. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue. Fitts RH; Balog EM Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677 [TBL] [Abstract][Full Text] [Related]
3. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle. Russ DW; Lovering RM Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718 [TBL] [Abstract][Full Text] [Related]
4. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle. Gölgeli A; Ozesmi C; Ozesmi M Indian J Physiol Pharmacol; 1995 Oct; 39(4):315-22. PubMed ID: 8582742 [TBL] [Abstract][Full Text] [Related]
5. Electrical stimulation of human tibialis anterior: (A) contractile properties are stable over a range of submaximal voltages; (B) high- and low-frequency fatigue are inducible and reliably assessable at submaximal voltages. Hanchard NC; Williamson M; Caley RW; Cooper RG Clin Rehabil; 1998 Oct; 12(5):413-27. PubMed ID: 9796932 [TBL] [Abstract][Full Text] [Related]
6. Excitation-induced Ca2+ influx and muscle damage in the rat: loss of membrane integrity and impaired force recovery. Mikkelsen UR; Fredsted A; Gissel H; Clausen T J Physiol; 2004 Aug; 559(Pt 1):271-85. PubMed ID: 15218060 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178 [TBL] [Abstract][Full Text] [Related]
8. Slow recovery of force in single skeletal muscle fibres. Lännergren J; Westerblad H; Bruton JD Acta Physiol Scand; 1996 Mar; 156(3):193-202. PubMed ID: 8729679 [TBL] [Abstract][Full Text] [Related]
9. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Kesar T; Binder-Macleod S Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456 [TBL] [Abstract][Full Text] [Related]
10. Doublets and low-frequency fatigue in potentiated human muscle. Bentley LF; Lehman SL Acta Physiol Scand; 2005 Sep; 185(1):51-60. PubMed ID: 16128697 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium. Bruton JD; Lännergren J; Westerblad H Acta Physiol Scand; 1998 Mar; 162(3):285-93. PubMed ID: 9578374 [TBL] [Abstract][Full Text] [Related]
12. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro. Vedsted P; Larsen AH; Madsen K; Sjøgaard G Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392 [TBL] [Abstract][Full Text] [Related]
13. Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro. Vassilakos G; James RS; Cox VM Can J Physiol Pharmacol; 2009 Mar; 87(3):203-10. PubMed ID: 19295661 [TBL] [Abstract][Full Text] [Related]
14. Physiological fatigue of smooth muscle contractions in rat urinary bladder. Pagala M; Lehman DS; Morgan MP; Jedwab J; Wise GJ BJU Int; 2006 May; 97(5):1087-93. PubMed ID: 16643497 [TBL] [Abstract][Full Text] [Related]
15. Force output during fatigue with progressively increasing stimulation frequency. Griffin L; Jun BG; Covington C; Doucet BM J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012 [TBL] [Abstract][Full Text] [Related]
16. Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related. Skurvydas A; Brazaitis M; Kamandulis S; Sipaviciene S J Electromyogr Kinesiol; 2010 Aug; 20(4):655-60. PubMed ID: 20347333 [TBL] [Abstract][Full Text] [Related]
17. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise. Rijkelijkhuizen JM; de Ruiter CJ; Huijing PA; de Haan A J Exp Biol; 2005 Jan; 208(Pt 1):55-63. PubMed ID: 15601877 [TBL] [Abstract][Full Text] [Related]
18. Low frequency fatigue of quadriceps muscle after sustained maximum voluntary contractions. Skurvydas A; Mamkus G; Stanislovaitis A; Mickeviciene D; Bulotiene D; Masiulis N Medicina (Kaunas); 2003; 39(11):1094-9. PubMed ID: 14646464 [TBL] [Abstract][Full Text] [Related]
19. Force-frequency and force-length properties in skeletal muscle following unilateral focal ischaemic insult in a rat model. Dormer GN; Teskey GC; MacIntosh BR Acta Physiol (Oxf); 2009 Nov; 197(3):227-39. PubMed ID: 19432588 [TBL] [Abstract][Full Text] [Related]
20. Prolonged loss of force and power following fatiguing contractions in rat soleus muscles. Is low-frequency fatigue an issue during dynamic contractions? Herskind J; Kristensen AM; Ørtenblad N; de Paoli F; Vissing K; Overgaard K Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1642-C1651. PubMed ID: 36317798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]