These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8729923)

  • 1. The equilibrium point hypothesis and its application to speech motor control.
    Perrier P; Ostry DJ; Laboissière R
    J Speech Hear Res; 1996 Apr; 39(2):365-78. PubMed ID: 8729923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarticulation of jaw movements in speech production: is context sensitivity in speech kinematics centrally planned?
    Ostry DJ; Gribble PL; Gracco VL
    J Neurosci; 1996 Feb; 16(4):1570-9. PubMed ID: 8778306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic biomechanical model for neural control of speech production.
    Sanguineti V; Laboissière R; Ostry DJ
    J Acoust Soc Am; 1998 Mar; 103(3):1615-27. PubMed ID: 9514026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of multi-muscle systems: human jaw and hyoid movements.
    Laboissière R; Ostry DJ; Feldman AG
    Biol Cybern; 1996 Apr; 74(4):373-84. PubMed ID: 8936389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control model of human tongue movements in speech.
    Sanguineti V; Laboissière R; Payan Y
    Biol Cybern; 1997 Jul; 77(1):11-22. PubMed ID: 9309860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech-like and non-speech lip kinematics and coordination in aphasia.
    Bose A; van Lieshout P
    Int J Lang Commun Disord; 2012; 47(6):654-72. PubMed ID: 23121525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of jaw orientation and position in mastication and speech.
    Ostry DJ; Munhall KG
    J Neurophysiol; 1994 Apr; 71(4):1528-45. PubMed ID: 8035233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyoid and tongue surface movements in speaking and eating.
    Hiiemae KM; Palmer JB; Medicis SW; Hegener J; Jackson BS; Lieberman DE
    Arch Oral Biol; 2002 Jan; 47(1):11-27. PubMed ID: 11743928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensation for loads during arm movements using equilibrium-point control.
    Gribble PL; Ostry DJ
    Exp Brain Res; 2000 Dec; 135(4):474-82. PubMed ID: 11156311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of the degrees of freedom of human jaw motion in speech and mastication.
    Ostry DJ; Vatikiotis-Bateson E; Gribble PL
    J Speech Lang Hear Res; 1997 Dec; 40(6):1341-51. PubMed ID: 9430754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articulatory organization of mandibular, labial, and velar movements during speech.
    Kollia HB; Gracco VL; Harris KS
    J Acoust Soc Am; 1995 Sep; 98(3):1313-24. PubMed ID: 7560504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor characteristics of speech motor sequences.
    Gracco VL; Abbs JH
    Exp Brain Res; 1989; 75(3):586-98. PubMed ID: 2744116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mandible and hyoid bone movements during speech.
    Westbury JR
    J Speech Hear Res; 1988 Sep; 31(3):405-16. PubMed ID: 3172757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The case for an internal dynamics model versus equilibrium point control in human movement.
    Hinder MR; Milner TE
    J Physiol; 2003 Jun; 549(Pt 3):953-63. PubMed ID: 12717002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-learning predictive model of articulator movements during speech production.
    Blackburn CS; Young S
    J Acoust Soc Am; 2000 Mar; 107(3):1659-70. PubMed ID: 10738819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.