These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix model. Mandel GS; Halverson PB; Mandel NS Scanning Microsc; 1988 Jun; 2(2):1189-98. PubMed ID: 2840735 [TBL] [Abstract][Full Text] [Related]
27. [New knowledge on the calcium pyrophosphate dihydrate (CPPD) crystal deposition disease in the cervical ligamentum flavum]. Kawano N; Matsuno T; Miyazawa S; Uchiyama H; Ohtaka H; Mii K; Tachibana S No Shinkei Geka; 1987 Feb; 15(2):181-90. PubMed ID: 3031524 [TBL] [Abstract][Full Text] [Related]
28. The effect of calcium and magnesium ions on calcium pyrophosphate crystal formation in aqueous solutions. Cheng PT; Pritzker KP J Rheumatol; 1981; 8(5):772-82. PubMed ID: 6273554 [TBL] [Abstract][Full Text] [Related]
29. Possible functions of alkaline phosphatase in dental mineralization: cadmium effects. Wöltgens JH; Lyaruu DM; Bervoets TJ J Biol Buccale; 1991 Jun; 19(2):125-8. PubMed ID: 1657901 [TBL] [Abstract][Full Text] [Related]
30. Calcium pyrophosphate crystal deposition: the effect of soluble iron in a kinetic study using a gelatin matrix model. Mandel GS; Halverson PB; Mandel NS Scanning Microsc; 1988 Jun; 2(2):1177-88. PubMed ID: 2840734 [TBL] [Abstract][Full Text] [Related]
31. [Study on identification of a calcium pyrophosphate dihydrate crystal using electron diffraction technique]. Watanabe W Nihon Seikeigeka Gakkai Zasshi; 1991 Sep; 65(9):745-56. PubMed ID: 1960475 [TBL] [Abstract][Full Text] [Related]
32. [A role for lipoproteins in the recovery from CPPD crystal-induced arthritis]. Ohnuma S Nihon Seikeigeka Gakkai Zasshi; 1994 Nov; 68(11):953-60. PubMed ID: 7852783 [TBL] [Abstract][Full Text] [Related]
33. A model for human calcium pyrophosphate crystal deposition disease: crystallization kinetics in a gelatin matrix. Mandel NS; Mandel GS Scan Electron Microsc; 1984; (Pt 4):1779-92. PubMed ID: 6098005 [TBL] [Abstract][Full Text] [Related]
34. Thyroid hormones induce features of the hypertrophic phenotype and stimulate correlates of CPPD crystal formation in articular chondrocytes. Rosenthal AK; Henry LA J Rheumatol; 1999 Feb; 26(2):395-401. PubMed ID: 9972975 [TBL] [Abstract][Full Text] [Related]
35. Clinical aspects of calcium pyrophosphate dihydrate crystal deposition. Doherty M; Dieppe P Rheum Dis Clin North Am; 1988 Aug; 14(2):395-414. PubMed ID: 2845493 [TBL] [Abstract][Full Text] [Related]
37. Ankylosing spondylitis, late osteoarthritis, vascular calcification, chondrocalcinosis and pseudo gout: toward a possible drug therapy. Mebarek S; Hamade E; Thouverey C; Bandorowicz-Pikula J; Pikula S; Magne D; Buchet R Curr Med Chem; 2011; 18(14):2196-203. PubMed ID: 21517761 [TBL] [Abstract][Full Text] [Related]
38. Bone-specific alkaline phosphatase activity is inhibited by bisphosphonates: role of divalent cations. Vaisman DN; McCarthy AD; Cortizo AM Biol Trace Elem Res; 2005 May; 104(2):131-40. PubMed ID: 15894813 [TBL] [Abstract][Full Text] [Related]
39. Calcium pyrophosphate crystal deposition disease and other crystal deposition diseases. Fam AG Curr Opin Rheumatol; 1992 Aug; 4(4):574-82. PubMed ID: 1503884 [TBL] [Abstract][Full Text] [Related]
40. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. Farley JR; Hall SL; Tanner MA; Wergedal JE J Bone Miner Res; 1994 Apr; 9(4):497-508. PubMed ID: 8030437 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]