BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8730512)

  • 1. Synergistic activation of cAMP and calcium on cAMP-response-element-mediated gene expression in GH3 pituitary tumor cells.
    Lin JH; Jang YC; Wen DC; Wang FF
    Cell Signal; 1996 Feb; 8(2):111-5. PubMed ID: 8730512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Ca2+ signalling in the vasoactive intestinal peptide and 8-Br-cAMP induction of c-fos mRNA expression.
    Jang YC; Kao LS; Wang FF
    Cell Signal; 1998 Jan; 10(1):27-34. PubMed ID: 9502114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP-response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1.
    Wong AO; Le Drean Y; Liu D; Hu ZZ; Du SJ; Hew CL
    Endocrinology; 1996 May; 137(5):1775-84. PubMed ID: 8612514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of luteinising hormone-beta subunit chloramphenicol acetyltransferase (LH-beta-CAT) fusion gene in rat pituitary cells: induction by cyclic 3'-adenosine monophosphate (cAMP).
    Clayton RN; Lalloz MR; Salton SR; Roberts JL
    Mol Cell Endocrinol; 1991 Sep; 80(1-3):193-202. PubMed ID: 1659545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasoactive intestinal peptide increases intracellular cAMP and gonadotropin-alpha gene activity in JEG-3 syncytial trophoblasts. Constraints posed by desensitization.
    Deutsch PJ; Sun Y; Kroog GS
    J Biol Chem; 1990 Jun; 265(18):10274-81. PubMed ID: 1693918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of VIP on prolactinemia in turkey anterior pituitary cells: role of cAMP second messenger in VIP-induced prolactin gene expression.
    Kang SW; Youngren OM; El Halawani ME
    Regul Pept; 2002 Nov; 109(1-3):39-44. PubMed ID: 12409212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic-adenosine 3',5'-monophosphate-stimulated c-fos gene transcription involves distinct calcium pathways in single beta-cells.
    Schöfl C; Waring M; Bergwitz C; Arseniev L; von zur Muhlen A; Brabant G
    Mol Cell Endocrinol; 2002 Jan; 186(1):121-31. PubMed ID: 11850128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoids activate somatostatin gene transcription through co-operative interaction with the cyclic AMP signalling pathway.
    Liu JL; Papachristou DN; Patel YC
    Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):863-9. PubMed ID: 7914402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha 1-adrenergic potentiation of vasoactive intestinal peptide stimulation of rat pinealocyte adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate: evidence for a role of calcium and protein kinase-C.
    Chik CL; Ho AK; Klein DC
    Endocrinology; 1988 Feb; 122(2):702-8. PubMed ID: 2892667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal recruitment of transcription factors at the 3',5'-cyclic adenosine 5'-monophosphate-response element of the human GnRH-II promoter.
    Poon SL; An BS; So WK; Hammond GL; Leung PC
    Endocrinology; 2008 Oct; 149(10):5162-71. PubMed ID: 18599546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells.
    Anderova M; Duchêne AD; Barbara JG; Takeda K
    Brain Res; 1998 Oct; 809(1):97-106. PubMed ID: 9795163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptides stimulate mitogen-activated protein kinase in the pituitary cell line GH4C1 by a 3',5'-cyclic adenosine monophosphate pathway.
    Le Péchon-Vallée C; Magalon K; Rasolonjanahary R; Enjalbert A; Gérard C
    Neuroendocrinology; 2000 Jul; 72(1):46-56. PubMed ID: 10940738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucocorticoid repression of 3',5'-cyclic-adenosine monophosphate-dependent human corticotropin-releasing-hormone gene promoter activity in a transfected mouse anterior pituitary cell line.
    Van LP; Spengler DH; Holsboer F
    Endocrinology; 1990 Sep; 127(3):1412-8. PubMed ID: 1696884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP).
    Taupenot L; Mahata SK; Wu H; O'Connor DT
    J Clin Invest; 1998 Feb; 101(4):863-76. PubMed ID: 9466982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activation of phosphodiesterase 7B1 by dopamine D1 receptor stimulation through the cyclic AMP/cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons.
    Sasaki T; Kotera J; Omori K
    J Neurochem; 2004 Apr; 89(2):474-83. PubMed ID: 15056290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of ethanol on the calcium-dependent potentiation of vasoactive intestinal peptide-stimulated cAMP and cGMP accumulation in rat pinealocytes.
    Chik CL; Ho AK
    Biochem Pharmacol; 1991 Sep; 42(8):1601-8. PubMed ID: 1656991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP and mitogen-activated protein kinases are required for glutamate-dependent cyclic AMP response element binding protein and Elk-1 phosphorylation in the dorsal striatum in vivo.
    Choe ES; McGinty JF
    J Neurochem; 2001 Jan; 76(2):401-12. PubMed ID: 11208903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of gene expression by transfected subunits of cAMP-dependent protein kinase.
    Büchler W; Meinecke M; Chakraborty T; Jahnsen T; Walter U; Lohmann SM
    Eur J Biochem; 1990 Mar; 188(2):253-9. PubMed ID: 2156696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons.
    Gabellini N; Bortoluzzi S; Danieli GA; Carafoli E
    J Neurochem; 2003 Jan; 84(2):282-93. PubMed ID: 12558991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Okadaic acid, a protein phosphatase inhibitor, enhances transcription of a receptor gene containing sequence A of the human prolactin promoter.
    Wera S; Belayew A; Martial JA
    Mol Endocrinol; 1993 Aug; 7(8):965-71. PubMed ID: 8232316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.