These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 873058)

  • 1. Interference of tooth differentiation with interposed filters.
    Thesleff I; Lehtonen E; Wartiovaara J; Saxén L
    Dev Biol; 1977 Jul; 58(1):197-203. PubMed ID: 873058
    [No Abstract]   [Full Text] [Related]  

  • 2. Recombination experiments on the odontogenic roles of mouse dental papilla and dental sac tissues in ocular grafts.
    Yoshikawa DK; Kollar EJ
    Arch Oral Biol; 1981; 26(4):303-7. PubMed ID: 6946737
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of l-azetidine-2-carboxylic acid, a proline analogue, on the in vitro development of mouse tooth germs.
    Galbraith DB; Kollar EJ
    Arch Oral Biol; 1974 Dec; 19(12):1171-6. PubMed ID: 4531879
    [No Abstract]   [Full Text] [Related]  

  • 4. Blood supply of the dental organ and of the dental papilla at the cap stage and at the Bell stage in rat.
    Kivovics P; Vizkelety T
    Folia Morphol (Praha); 1982; 30(2):131-2. PubMed ID: 7117988
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of the dentofacial complex.
    Ten Cate AR
    Dent Clin North Am; 1982 Jul; 26(3):445-59. PubMed ID: 6955220
    [No Abstract]   [Full Text] [Related]  

  • 6. Development and cell fate in interspecific (Mus musculus/Mus caroli) intraocular transplants of mouse molar tooth-germ tissues detected by in situ hybridization.
    Lubbock MJ; Harrison VT; Lumsden AG; Palmer RM
    Arch Oral Biol; 1996 Jan; 41(1):77-84. PubMed ID: 8833594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal distribution of Ki-67 proliferation marker, Bcl-2 and Bax proteins in the developing human tooth.
    Kalibović Govorko D; Bečić T; Vukojević K; Mardešić-Brakus S; Biočina-Lukenda D; Saraga-Babić M
    Arch Oral Biol; 2010 Dec; 55(12):1007-16. PubMed ID: 20732674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcirculation of human fetal tooth buds: a SEM study of corrosion casts.
    Gorczyca J; Litwin JA; Nowogrodzka-Zagórska M; Skawina A; Miodoński AJ
    Eur J Morphol; 1994 Mar; 32(1):3-10. PubMed ID: 8086266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of expression patterns of IGF-1, caspase-3 and HSP-70 in developing human tooth germs.
    Kero D; Kalibovic Govorko D; Medvedec Mikic I; Vukojevic K; Cigic L; Saraga-Babic M
    Arch Oral Biol; 2015 Oct; 60(10):1533-44. PubMed ID: 26276267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, localisation and synthesis of versican by the enamel organ of developing mouse molar tooth germ: an in vivo and in vitro study.
    Jiang BZ; Yokohama-Tamaki T; Wang ZL; Obara N; Shibata S
    Arch Oral Biol; 2010 Dec; 55(12):995-1006. PubMed ID: 20813348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic control of early odontogenesis.
    Cobourne MT
    Br J Orthod; 1999 Mar; 26(1):21-8. PubMed ID: 10333884
    [No Abstract]   [Full Text] [Related]  

  • 12. Epithelial-mesenchymal interactions in tooth germs: mechanisms of differentiation.
    Ruch JV; Lesot H; Karcher-Djuricic V; Meyer JM; Mark M
    J Biol Buccale; 1983 Sep; 11(3):173-93. PubMed ID: 6361015
    [No Abstract]   [Full Text] [Related]  

  • 13. Dental cell interaction with extracellular-matrix constituents: type-I collagen and fibronectin.
    Lesot H; Karcher-Djuricic V; Mark M; Meyer JM; Ruch JV
    Differentiation; 1985; 29(2):176-81. PubMed ID: 3899832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of neural cell-adhesion molecule mRNA during mouse molar tooth development.
    Obara N; Suzuki Y; Nagai Y; Nishiyama H; Mizoguchi I; Takeda M
    Arch Oral Biol; 2002 Nov; 47(11):805-13. PubMed ID: 12446188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmentally regulated expression of intracellular Fgf11-13, hormone-like Fgf15 and canonical Fgf16, -17 and -20 mRNAs in the developing mouse molar tooth.
    Kettunen P; Furmanek T; Chaulagain R; Kvinnsland IH; Luukko K
    Acta Odontol Scand; 2011 Nov; 69(6):360-6. PubMed ID: 21449687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bivalent histone modifications during tooth development.
    Zheng LW; Zhang BP; Xu RS; Xu X; Ye L; Zhou XD
    Int J Oral Sci; 2014 Dec; 6(4):205-11. PubMed ID: 25394593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basement membrane of the enamel organ in human odontogenesis.
    Rosenberg RJ; Schilder H
    Oral Surg Oral Med Oral Pathol; 1984 May; 57(5):544-53. PubMed ID: 6203077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of prion gene and presence of prion protein during development of mouse molar tooth germ.
    Khan QE; Press CM; Sehic A; Landin MA; Risnes S; Osmundsen H
    Eur J Oral Sci; 2010 Dec; 118(6):559-65. PubMed ID: 21083616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of dental pulp in the histogenesis of the enamel organ].
    Osman M; Karcher-Djuricic V; Ruch JV
    C R Seances Soc Biol Fil; 1979; 173(4):730-5. PubMed ID: 160817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3H-glucosamine electron microscope autoradiography after isolated labeling of the enamel organ or the dental papilla followed by reassociated toothgerm culture.
    Frank RM; Osman M; Meyer JM; Ruch JV
    J Biol Buccale; 1979 Sep; 7(3):225-41. PubMed ID: 290590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.