These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

894 related articles for article (PubMed ID: 8730760)

  • 1. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries.
    Petersson J; Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1997 Apr; 120(7):1344-50. PubMed ID: 9105711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Davis SC; Högestätt ED
    Br J Pharmacol; 1996 Jul; 118(5):1147-52. PubMed ID: 8818337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived factors and hyperpolarization of the carotid artery of the guinea-pig.
    Corriu C; Félétou M; Canet E; Vanhoutte PM
    Br J Pharmacol; 1996 Nov; 119(5):959-64. PubMed ID: 8922746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to N omega-nitro-L-arginine.
    Zygmunt PM; Högestätt ED; Grundemar L
    Acta Physiol Scand; 1994 Oct; 152(2):137-43. PubMed ID: 7839858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H; Kubes P; Triggle C
    Br J Pharmacol; 2000 Mar; 129(6):1194-200. PubMed ID: 10725268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries.
    Murphy ME; Brayden JE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):723-34. PubMed ID: 8788937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP; Bendhack LM
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine-induced vasodilation may depend entirely upon NO in the femoral artery of young piglets.
    Støen R; Lossius K; Karlsson JO
    Br J Pharmacol; 2003 Jan; 138(1):39-46. PubMed ID: 12522071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-dependent relaxation resistant to N omega-nitro-L-arginine in the rat hepatic artery and aorta.
    Zygmunt PM; Grundemar L; Högestätt ED
    Acta Physiol Scand; 1994 Sep; 152(1):107-14. PubMed ID: 7810328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA; Buckley CH; Jones GC; Sandeep TC; Andrews RC; Elliott AI; Gray GA; Williams BC; McKnight JA; Walker BR; Hadoke PW
    Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta.
    Martínez-Orgado J; González R; Alonso MJ; Marín J
    Life Sci; 1999; 64(4):269-77. PubMed ID: 10027761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.