These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 8730865)
21. Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. Chang KJ; Lin G; Men LC; Wang CC J Biol Chem; 2006 Mar; 281(12):7775-83. PubMed ID: 16431919 [TBL] [Abstract][Full Text] [Related]
22. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Mueller PP; Harashima S; Hinnebusch AG Proc Natl Acad Sci U S A; 1987 May; 84(9):2863-7. PubMed ID: 3554249 [TBL] [Abstract][Full Text] [Related]
23. Posttranscriptional regulation of human ADH5/FDH and Myf6 gene expression by upstream AUG codons. Kwon HS; Lee DK; Lee JJ; Edenberg HJ; Ahn YH; Hur MW Arch Biochem Biophys; 2001 Feb; 386(2):163-71. PubMed ID: 11368338 [TBL] [Abstract][Full Text] [Related]
24. An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Zhang F; Hinnebusch AG Nucleic Acids Res; 2011 Apr; 39(8):3128-40. PubMed ID: 21227927 [TBL] [Abstract][Full Text] [Related]
25. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. Kozak M EMBO J; 1997 May; 16(9):2482-92. PubMed ID: 9171361 [TBL] [Abstract][Full Text] [Related]
26. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. Miller PF; Hinnebusch AG Genes Dev; 1989 Aug; 3(8):1217-25. PubMed ID: 2676723 [TBL] [Abstract][Full Text] [Related]
27. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. Ruiz-Echevarria MJ; Peltz SW EMBO J; 1996 Jun; 15(11):2810-9. PubMed ID: 8654378 [TBL] [Abstract][Full Text] [Related]
28. Signals that produce 3' termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Russo P; Li WZ; Guo Z; Sherman F Mol Cell Biol; 1993 Dec; 13(12):7836-49. PubMed ID: 8246998 [TBL] [Abstract][Full Text] [Related]
29. Pushing the limits of the scanning mechanism for initiation of translation. Kozak M Gene; 2002 Oct; 299(1-2):1-34. PubMed ID: 12459250 [TBL] [Abstract][Full Text] [Related]
30. Constraints on reinitiation of translation in mammals. Kozak M Nucleic Acids Res; 2001 Dec; 29(24):5226-32. PubMed ID: 11812856 [TBL] [Abstract][Full Text] [Related]
31. Influence of the codon following the initiation codon on the expression of the lacZ gene in Saccharomyces cerevisiae. Looman AC; Laude M; Stahl U Yeast; 1991 Feb; 7(2):157-65. PubMed ID: 1905858 [TBL] [Abstract][Full Text] [Related]
32. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Kozak M Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8301-5. PubMed ID: 2236042 [TBL] [Abstract][Full Text] [Related]
33. cis- and trans-acting suppressors of a translation initiation defect at the cyc1 locus of Saccharomyces cerevisiae. Pinto I; Na JG; Sherman F; Hampsey M Genetics; 1992 Sep; 132(1):97-112. PubMed ID: 1327957 [TBL] [Abstract][Full Text] [Related]
34. eIF1 Loop 2 interactions with Met-tRNA Thakur A; Hinnebusch AG Proc Natl Acad Sci U S A; 2018 May; 115(18):E4159-E4168. PubMed ID: 29666249 [TBL] [Abstract][Full Text] [Related]
35. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. Bonetti B; Fu L; Moon J; Bedwell DM J Mol Biol; 1995 Aug; 251(3):334-45. PubMed ID: 7650736 [TBL] [Abstract][Full Text] [Related]
36. Translation of the Saccharomyces cerevisiae tcm1 gene in the absence of a 5'-untranslated leader. Maicas E; Shago M; Friesen JD Nucleic Acids Res; 1990 Oct; 18(19):5823-8. PubMed ID: 2216774 [TBL] [Abstract][Full Text] [Related]
37. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820 [TBL] [Abstract][Full Text] [Related]
38. Multiple upstream AUG codons mediate translational control of GCN4. Mueller PP; Hinnebusch AG Cell; 1986 Apr; 45(2):201-7. PubMed ID: 3516411 [TBL] [Abstract][Full Text] [Related]
39. Sequences 5' of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. Grant CM; Miller PF; Hinnebusch AG Nucleic Acids Res; 1995 Oct; 23(19):3980-8. PubMed ID: 7479046 [TBL] [Abstract][Full Text] [Related]
40. Multiple cis-acting elements modulate the translational efficiency of GCN4 mRNA in yeast. Tzamarias D; Alexandraki D; Thireos G Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4849-53. PubMed ID: 3088566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]