These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8731089)

  • 1. Effect of sodium bicarbonate on intracellular pH under different buffering conditions.
    Levraut J; Labib Y; Chave S; Payan P; Raucoules-Aime M; Grimaud D
    Kidney Int; 1996 May; 49(5):1262-7. PubMed ID: 8731089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial effect of sodium bicarbonate on intracellular pH depends on the extracellular nonbicarbonate buffering capacity.
    Levraut J; Giunti C; Ciebiera JP; de Sousa G; Ramhani R; Payan P; Grimaud D
    Crit Care Med; 2001 May; 29(5):1033-9. PubMed ID: 11378618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIDS-sensitive pHi regulation in single rat cardiac myocytes in nominally HCO3-free conditions.
    Wu ML; Tsai ML; Tseng YZ
    Circ Res; 1994 Jul; 75(1):123-32. PubMed ID: 8013070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of alkaline buffers on cytoplasmic pH in myocardial cells exposed to metabolic acidosis.
    Li YC; Wiklund L; Tarkkila P; Bjerneroth G
    Resuscitation; 1996 Jul; 32(1):33-44. PubMed ID: 8809918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Tris-Hydroxymethyl Aminomethane on intracellular pH depends on the extracellular non-bicarbonate buffering capacity.
    Giunti C; Priouzeau F; Allemand D; Levraut J
    Transl Res; 2007 Dec; 150(6):350-6. PubMed ID: 18022597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bicarbonate therapy and intracellular acidosis.
    Goldsmith DJ; Forni LG; Hilton PJ
    Clin Sci (Lond); 1997 Dec; 93(6):593-8. PubMed ID: 9497798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system.
    Frey G; Schlue WR
    J Physiol; 1993 Mar; 462():627-43. PubMed ID: 8331595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of alkaline buffers on cytoplasmic pH in lymphocytes.
    Bjerneroth G; Sammeli O; Li YC; Wiklund L
    Crit Care Med; 1994 Oct; 22(10):1550-6. PubMed ID: 7924364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.
    Buckler KJ; Vaughan-Jones RD; Peers C; Nye PC
    J Physiol; 1991 May; 436():107-29. PubMed ID: 2061827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte.
    Lagadic-Gossmann D; Buckler KJ; Vaughan-Jones RD
    J Physiol; 1992 Dec; 458():361-84. PubMed ID: 1302269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic control of intracellular pH in rat cerebellar Purkinje cells maintained in culture.
    Gaillard S; Dupont JL
    J Physiol; 1990 Jun; 425():71-83. PubMed ID: 2213591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of osmotic stresses on isolated rat hepatocytes. II. Modulation of intracellular pH.
    Gleeson D; Corasanti JG; Boyer JL
    Am J Physiol; 1990 Feb; 258(2 Pt 1):G299-307. PubMed ID: 2305896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH regulation in single CA1 neurons acutely isolated from the hippocampi of immature and mature rats.
    Bevensee MO; Cummins TR; Haddad GG; Boron WF; Boyarsky G
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):315-28. PubMed ID: 8841993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.
    Chen GS; Lee SP; Huang SF; Chao SC; Chang CY; Wu GJ; Li CH; Loh SH
    Arch Oral Biol; 2018 Jun; 90():19-26. PubMed ID: 29524788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of intracellular pH in cultured avian chondrocytes.
    Dascalu A; Nevo Z; Korenstein R
    J Physiol; 1993 Feb; 461():583-99. PubMed ID: 8394427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of Na+-H+ exchange, Na+-HCO3- co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes.
    Ch'en FF; Dilworth E; Swietach P; Goddard RS; Vaughan-Jones RD
    J Physiol; 2003 Nov; 552(Pt 3):715-26. PubMed ID: 12923205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH regulation in hepatoma cells: roles for Na-H exchange, Cl-HCO3 exchange, and Na-HCO3 cotransport.
    Weintraub WH; Machen TE
    Am J Physiol; 1989 Sep; 257(3 Pt 1):G317-27. PubMed ID: 2551179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tris-hydroxymethyl aminomethane and sodium bicarbonate to buffer metabolic acidosis in an isolated heart model.
    Sirieix D; Delayance S; Paris M; Massonnet-Castel S; Carpentier A; Baron JF
    Am J Respir Crit Care Med; 1997 Mar; 155(3):957-63. PubMed ID: 9117032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.
    Szatkowski MS
    J Physiol; 1989 Feb; 409():103-20. PubMed ID: 2555474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte.
    Leem CH; Lagadic-Gossmann D; Vaughan-Jones RD
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):159-80. PubMed ID: 10226157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.